欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学一题型。

采芑
麦人
数一考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间  试卷满分为150分,考试时间为180分钟.二、答题方式  答题方式为闭卷、笔试.三、试卷内容结构  高等教学  56%  线性代数  22%  概率论与数理统计 22%四、试卷题型结构  单选题 8小题,每题4分,共32分  填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分函数,多重微积分,微积分方程,级数,是高数部分大题必考的。线性代数部分无论出不出大题都要全看,因为线代是一个整体,思路贯穿始终。概率的大题 求概率分布,函数的比较多。这只是大体上。推荐你看李永乐的数一真题及解析。那本书把真题按章节分类,哪章常出什么一目了然。常考的知识点就那么几个。祝你考研成功!

考研数学科目,都考什么内容?

矫言伪行
怪尸案
根据工学\经济学\管理\学各学科对硕士研究生入学所应具备的数学知识和能力的要求不同,将数学统考试卷分为数学一、数学二、数学三和数学四,每种试卷适用的招生专业如下: 数学一适用的招生专业: 1.工学门类的力学、机械 工程 、光学 工程 、仪器科学与技术、冶金 工程 、动力 工程 及 工程 热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业。 3. 管理 学门类中的 管理 科学与工程一级学科。 数学二适用的招生专业: 1.工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程第一级学科中所有的二级学科、专业。 2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较低的二级学科、专业。 数学三适用的招生专业: 1.经济学门类的应用经济学一级学科中统计学、数量经济学二级学科、专业。 2. 管理 学门类的工商 管理 一级学科中 企业 管理、技术经济及管理二级学科、专业。理科类专业 数一考高等数学,线性代数,概率论 数二考高等数学,线性代数 文科类专业 数三考高等数学,线性代数,概率论 数四考高等数学,线性代数,概率论 难度依次递减,数一三四虽然考得科目一样,但是具体范围不一样希望对你有所帮助。

考研数学一包括什么内容?

亦驰
实事
高等数学线性代数概率论这是2009考研数学一大纲 http://..com/question/89062517.html希望对你有所帮助。加油

考研题型是什么呢?

金鸳鸯
洪班长
政治是选择题和材料分析题,各占50分数学填空题24分,选择题32分,计算证明的大题96分英语阅读理解50分,英译汉10分,完型填空10分,作文30分专业课文科一般是名词解释、简答和论述题理科一般是名词解释、计算和证明题

考研数学的数一数二的区别?

落地点
坏爸爸
考研数学针对不同专业的考生有不同的考试内容,我们在复习考研数学之前首先要搞清楚考研数学一二三的区别。

考研数学的考试内容?

圣人之道
神者勿齿
考研数学一二三都考什么?考试范围来喽!青岛中公考研2019年02月25日19考研的宝宝正在全力准备复试,那20考研的宝宝开始准备考研了吗?考数学的专业有经济学、理学、工学、农学、管理学,对咱们这个考研数学考什么还不太清楚,小编给大家说简单的说一下考研数学都考什么,希望能给大家提供一些参考。考研数学具体有数学一、数学二、数学三,下面我们先从数学一说起,数学一的考试科目是高等数学、线性代数、概率论与数理统计三门课程,其中高等数学的考试内容为:1、函数、极限、连续;2、一元函数微分学;3、一元函数积分学;4、向量代数和空间解析几何;5、多元函数微分学;6、多元函数积分学;7、无穷级数;8、常微分方程。线性代数的考试内容为:1、行列式;2、矩阵;3、向量;4、线性方程组;5、矩阵的特征值和特征向量;6、二次型。概率论与数理统计初步的考试内容为:1、古典概率;2、随机变量及其分布;3、多维随机变量及其分布;4、随机变量的数字特征;5、大数定律和中心极限定理;6、数理统计的基本概念;7、参数估计;8、假设检验。上面呢是数学一的考试内容,那数学二都考些什么呢,它只考高等数学和线性代数两门课程,其中高等数学的考试内容为:1、函数、极限、连续;2、一元函数微分学;3、一元函数积分学;4、多元函数微积分学;5、常微分方程。数学二相对数学一内容少了很多部分,主要体现在高数上,数学二不考察向量代数和空间解析几何、无穷级数,而且多元函数里没有三重积分、曲线曲面积分,所以考数学二高数部分内容相对数学一少了很多!线代部分数学一、数学二这几年都是一样的,要求也一样,考试题目也渐渐趋于相同。接下来我们来说一下数学三的考试内容,其中高等数学的内容为:1、函数、极限、连续;2、一元函数微分学;3、一元函数积分学;4、多元函数微积分学;5、常微分方程;6、无穷级数。实际上,最近几年数学一、二、三在线代部分与数学一、三的概率部分有趋于相同的趋势,所以复习上虽然数三要求低一点,但是如果按照数一的难度来复习,那么做题肯定没有问题。和数学一相比无论是内容上还是难度上数学三都有所简化,但是内容依旧不少,还是要好好复习的!这就是考研数学一二三要考的内容,希望能对大家有所帮助,最后呢,小编祝大家都能考上心仪的学校,能够金榜题名。

考研数学真题从什么时候开始做合适?

神悟
地气郁结
真题是每一位考生在复习时必须要经历的一段过程,这段过程也是每一位考生提分的一个重点内容,但是什么时候开始做真题?如何做真题这些你都了解么?下面跟着哈尔滨考研培训黑龙江中公考研小编一起来了解一下吧。首先,大家必须要明白,我们做真题的目的在于什么。简单的说,真题可以为我们的复习指明一条路,真题可以明确告诉我们考试究竟要考什么,考试的知识点是什么,考试的难度达到什么程度。然而,对很多同学来说,这一点是很难从真题中得到的,原因就在于学生的数学程度和数学素养有限,对他们而言,很难去读懂每一道真题后面,所蕴含的的真意是什么,所以说这一点往往需要老师帮助大家。在说完了我们做真题的目的之外,下面我就给大家介绍一下,我们究竟该如何去做真题。我们究竟该做多少年的真题?在这里,建议大家至少要做近20年的真题,这是因为考研数学和考研英语、考研政治不一样,英语和政治的时代感比较强,时效性也比较强,比如说,大家在做10年前的英语和政治真题和现在真题是完全不一样的感觉。然而,数学恰恰与此相反,经过近28年的萃取,考研数学早已发展成熟,不会在知识点和深度上面有太多的变化。这个时候,有一些学生会问,考过的真题还会再考吗?给大家举一个例子,在2012年考过一道和1994年完全一样的题目,可以告诉大家,纵然不会考原题,至少也会在做题的思路和做题的思想上是完全一样的,所以说,建议大家至少要做近20年的考研真题。我们需要在什么时候做真题?建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。应该怎么样去做真题?我给大家的建议是,在提高阶段,我们首先将真题按照题型进行分类,我们从题型的类别去做真题。这样做的目的有两个,第一,我们可以知道我们目前的程度和考试差距究竟有多大;第二,在我们分开类别去做真题的时候,我们也可以知道,自己究竟在那一块的知识比较薄弱,方便我们进行有针对性的查缺补漏做专题复习。其次,在我们的第四个阶段,也就是冲刺模考阶段,也是要以真题为根本出发点,需要大家继续做真题。但是这个时候,我们不用再将真题进行分类,而是直接进行整套真题的进行做。这个时候,可能会有同学这样说,我在提高阶段已经做过真题,为什么现在还有做真题?大家必须明白,你做分类的真题和整套真题是两种概念,我们在做分类的真题的时候,我们不需要太多的思维跨度,然而,当我们做整套真题的时候,我们是需要思维跨度,这一点,在考试过程中,对大家的要求也是比较大的。所以,在冲刺模考阶段,我们还是需要做真题。当然,也需要有一定的模拟题进行穿插起来做。毕竟,大家在提高阶段已经将真题做过一遍。这里,给大家的建议是做两套真题,做一套模拟题。

考研数学(数学一)考什么?

翡翠谷
九月刊
数一:高等数学、线性代数、概率论与数理统计。数二:高等数学、线性代数。数三:微积分、线性代数、概率论与数理统计。

研究生数学一考什么?哪些内容不需要考?

然奚求焉
冰上乐
研究生数学一考什么,考生一定要参考考研数学一大纲。数学一的试卷内容结构为高等数学56%;线性代数22%;概率论与数理统计22%。具体考察内容:高等数学函数极限连续1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当f''(x)>0 时,f(x) 的图形是凹的;当f"(x) <0时,f(x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.向量代数和空间解析几何考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.多元函数微分学考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.多元函数积分学考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).无穷级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握泰勒级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.常微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程: .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数第一章:行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.第二章:矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换初等矩阵矩阵的秩矩阵等价 分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.第三章:向量考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求:1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.第四章:线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.第五章:矩阵的特征值及特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.第六章:二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率与统计第一章:随机事件和概率考试内容:随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.第二章:随机变量及其分布考试内容:随机变量 随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求:1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为5.会求随机变量函数的分布.第三章:多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.第四章:随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.第五章:大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .第六章:数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.第七章:参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.第八章:假设检验考试内容显著性检验假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。2.掌握单个及两个正态总体的均值和方差的假设检验。