欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

研究生考试中数学二主要考试内容包含哪些?

大搜查
量论
1、考研科目数学二的主要内容:(1)高数:极限、导数与导数的应用、中值定理、不定积分、定积分、定积分的应用、多元函数微分学、二重积分、常微分方程。(2)线代:行列式、矩阵、向量组的相关性与秩、线性方程组、特征值和特征向量。2、考数二的一般都是专硕,当然也有一些专硕的是考数一的。纺织科学与工程、轻工技术与工程、农业工程、林业工程、控制工程、集成电路、通信工程等等。扩展资料:1、数一要考的内容有:高等数学:函数、极限、连续、一元函数微积分学、向量代数与空间几何、多元函数微积分学、级数、常微分方程。线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。概率论与数理统计:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验。对于考数一的专业也是和数二、数三不同的。大部分考数一的都是学术型专业。力学、机械工程、光学工程、仪器科学与技术、动力工程、电气工程、控制科学与工程等等专业。2、数三要考的内容有:高数:函数、连续、一元函数微积分学、多元函数微积分学、级数、常微分方程和差分方程线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。概率:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验考数三的专业一般都是偏向文科性质的专业,经济类管理类较多。统计学、数量经济学、国民经济学、财政学、金融学、企业管理、技术经济及管理等等专业。参考资料来源:百度百科 - 考研数学二大纲

研究生考试中数学一与数学二有什么具体的区别?

无时无刻
而不能惊
数学一: 高等数学约56 % 线性代数约 22 % 概率论与数理统计约22 %  数学二: 高等数学约78 % 线性代数约22 %数学一或二具体划分:轻工、纺织、食品、农林考数学二;化学工程、材料工程、环境工程、石油天然气工程、地质矿业工程可根据本专业对数学的要求选择选择数学一或二;其他各类专业(包括授工学学位的管理科学与工程一级学科)必须考数学一。拓展资料:考研科目又有那些呢?必考科目:专业课、英语、政治。具体为:考研初试共五科,满分为500分。各个专业考试科目不同,一般为政治+英语+2门专业课(或者数学+1门专业课),不是所有专业都考数学的。理科及管理类一般都考,具体考试科目请参考自己拟报考招生院校历年招生专业目录。全国统考公共课有政治(满分100分)、英语(满分100分)、数学(一、二、三)(满分150分)。全国统考专业课有心理学、教育学、历史学、农学、计算机科学与技术(满分均为150分)。除此之外,其它专业课均为招生院校自主命题、阅卷。

考研的话,是要做数学二卷吗

平易恬淡
瑛士
考研数学一般有数一 数二以及数三的 ,其中数一一般为理工科学硕考研必考科目 包含高数 线性代数 概率论数二一般为专硕考研必考科目 包含高数和线性代数部分章节数三一般为经济类考研必考科目 包含高数 线性代数 概率论 但是和数一在某些章节上有差别考数二的多为专硕 但是专硕不一定考数二 有的也考数一和数三 看学校 建议登录研究生招生信息网 在硕士目录栏下 找到所想考的专业和学校仔细查看学校提供的考试大纲 根据学校意见复习数学

研究生考试数学二都考什么 具体 无穷级数 是不是考点

爱无能
满苟得曰
一、考试内容1、函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质2、一元函数微分3、一元函数积分4、多元函数微积分学5、常微分方程6、线性代数考数二的专业而工学类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中的二级学科和专业均要求使用是数学二考试试卷。除此之外,还有一些工科类要求的数学试卷难易程度是由招生单位决定的,比如材料科学与工程、化学工程与技术、地质资料与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科,对数学要求高的二级学科则选取数学一,要求较低的则选取数学二。扩展资料:报考条件(一)报名参加硕士研究生全国统一入学考试的人员,须符合下列条件:(一)中华人民共和国公民。(二)拥护中国共产党的领导,品德良好,遵纪守法。(三)身体健康状况符合国家和招生单位规定的体检要求。(四)考生学业水平必须符合下列条件之一:1、国家承认学历的应届本科毕业生(含普通高校、成人高校、普通高校举办的成人高等学历教育应届本科毕业生)及自学考试和网络教育届时可毕业本科生,录取当年9月1日前须取得国家承认的本科毕业证书)。2、具有国家承认的大学本科毕业学历的人员,要求报名时通过学信网学历检验,没通过的可向有关教育部门申请学历认证。3、获得国家承认的高职高专毕业学历后满2年(从毕业后到录取当年9月1日,下同)或2年以上,达到与大学本科毕业生同等学历,且符合招生单位根据本单位的培养目标对考生提出的具体业务要求的人员。4、国家承认学历的本科结业生,按本科毕业生同等学历身份报考。5.已获硕士、博士学位的人员。参考资料:百度百科-考研数学二大纲百度百科-研究生考试

2017考研数学二试卷分值是多少

极限王
君曰
考研数学二满分是150分,基本上不会变化的,具体你还可以等2017考研数学大纲出来,查看下分值。数学二的考试内容与数一、数三也是不同的,具体复习你可以看看汤神的考研数学复习大全·数学二,这本书根据大纲来编写的,也适合现在复习用,汤神的考研数学视频也很不错,讲的很好,你可以听听。本回答被网友采纳

考研 数学二 具体考什么内容

一步一鬼
汤武之室
考研数学二的具体内容会因为地点、时间、政策等的变化而有所变化,但考试的大纲一般包括高等数学和线性代数。数二大纲:考试科目:高等数学、线性代数形式结构:1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。2、答题方式答题方式为闭卷、笔试。3、试卷内容结构高等数学 78%线性代数  22%4、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高等数学(函数、极限、连续):考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数, 函数关系的建立 数列极限与函数极限的定义及其性质 ,函数的左极限和右极限 ,无穷小量和无穷大量的概念及其关系 ,无穷小量的性质及无穷小量的比较 ,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。拓展资料:数三大纲:考试科目:微积分、线性代数、概率论与数理统计形式结构:试卷满分及考试时间试卷满分为150分,考试时间为180分钟.答题方式:答题方式为闭卷、笔试.试卷内容结构:微积分 56%线性代数 22%概率论与数理统计 22%试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考研数学 百度百科

考研数学的数一数二数三是什么意思

大追求
穿越爱
  考研的数一数二数三:  一、考试科目  考研数学一的考试科目有:高等数学、线性代数、概率论与数理统计。各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。  考研数学二的考试科目有:高等数学、线性代数。在试题中,各科目所占比例为:高等数学78%、线性代数22%。  考研数学三考试科目有:微积分、线性代数、概率论与数理统计。各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。  从上述对比中不难看出,数一、数二、数三最大的区别是数学二缺少了概率论与数理统计,而数一和数三不论考试科目还是分值比例都是相同的。  二、试卷结构  考研数学一、二、三在试卷中的题型结构都是一样的。分别为:单项选择题8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分。  三、考试内容  数一、数二、数三在考试内容上的差别主要体现在考查范围上,其中数学一考查范围最广,数学二考查范围最窄。  具体来说,在高等数学中,数一、数二、数三的主要区别在于:空间解析几何、多元函数积分学(二重积分以外),仅数学一考查;无穷级数,仅数学一、数学三考查;微积分的物理应用,仅数学一、数学二考查;微积分的经济学应用,仅数学三考查。  在线性代数中,数一、数二和数三的考试内容和要求几乎一样,唯一的区别是数学一多了向量空间的内容,这部分考点在考试中涉及得很少,对考生的复习没有实质性影响。  在概率论与数理统计中,数学一的考试范围比数学三略大,主要增加了参数估计部分的考点,包括估计量的评选标准、区间估计以及后续的假设检验。  除了考查范围上的区别以外,在都考查的部分,数一、数二、数三对具体考点的要求基本上是一致的。同时,由于数学二在高等数学中的考查范围较小、 而考的分值又最大,这就导致数学二在高等数学部分的考查相当于数一和数二更细致、更全面、同时也更灵活。但总的来说,数一、数二、数三在共有考点的要求上 的区别并不明显,不需要加以区分。

考研数学是全国统一的卷子还是学校自己出?

本觉
大言亦然
全国统一的卷子针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。考研数学解答题主要考查综合运用知识的能力、逻辑推理能力、空间想象能力以及分析、解决实际问题的能力,包括计算题、证明题及应用题等,综合性较强,但也有部分题目用初等解法就可作答。跨考教育数学教研室李老师表示,解答题解题思路灵活多样,答案有时并不唯一,这就要求同学们不仅会做题,更要能摸清命题人的考查意图,选择最适合的方法进行解答。扩展资料:考试技巧有:考研数学基础阶段,吃透课本,掌握大纲;考研数学解答题不同题型,应对策略不同;考研冲刺,端正心态,高效高质的迎接考研;考研数学最后冲刺,避免备考误区。考试科目高等数学、线性代数、概率论与数理统计形式结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学  56%线性代数  22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分参考资料:考研数学-百度百科

考研数学二要考哪些

半边灵
流仪
2006年全国硕士研究生入学考试 数学二考试大纲 数 学 二 [考试科目] 高等数学、线性代数 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念。 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6. 掌握极限的性质及四则运算法则 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容。 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的n阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。 5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分 定积分的应用 新增知识点:增加了“用定积分表达和计算质心” 考试要求 1.理解原函数概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式. 5.了解广义积分的概念,会计算广义积分. 6.了解定积分的近似计算法. 7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数、隐函数求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义。 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。 五、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的方程及一阶线性微分方程的解法,会解齐次微分方程。 3.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')y=f''(y,y'). 4.理解二阶线性微分方程解的性质及解的结构定理. 5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 7.会用微分方程解决一些简单的应用问题.线性代数 一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、对称矩阵、三角矩阵、反对称矩阵,以及它们的性质. 2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式 3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 三、向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 新增知识点:向量的内积线性无关向量组的正交规范化方法 考试要求 1.理解n维向量的概念、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系. 5.了解内积的概念,掌握线性无关向量组的正交规范化的施密特(Schmidt)方法” 四、线性方程组 考试内容 线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。 4.理解非齐次线性方程组解的结构及通解的概念. 5.会用初等行变换求解线性方程组. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵” 3.理解实对称矩阵地特征值和特征向量的性质”考试要求的变化:1.将“2.了解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”调整为“2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”2.将“3.了解实对称矩阵地特征值和特征向量的性质”调整为“3.理解实对称矩阵地特征值和特征向量的性质”试卷结构 (一)题分及考试时间 试卷满分为150分,考试时间为180分钟。 (二)内容比例 高等教学 约80% 线性代数 约20% (三)题型比例 填空题与选择题 约40% 解答题(包括证明题)约60%。数学二,是报考农学的学生考(还有专硕),考试内容只有高等数学和线性代数,但是高等数学中删去的较多,是考试内容最少的