欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2011年考研302数学二参考书目有哪些??

舜有膻行
精神
其实每年的数学一二三的参考书都是相同的,只是范围不同而已。数学二的高数是同济大学第五版或者第六版的绿色皮的。线性代数也是同济大学的紫色皮的。数学二不考概率与数理统计,所以可以不看。当然,上面说的是教材,辅导书建议买李永乐的复习全书,真题,如果时间允许的话,还可以看看李永乐的400题(模拟题很难)。祝考研成功!2011考研数学二参考用书推荐:数学课本和陈文灯的《复习指南》或者李永乐的《复习全书》希望对你有帮助哦

2011年考研数学难吗?

气运
流花
8个选择跳了4个。,做完选择题我晕场了。悲剧啊。在中国,就没有“简单”两个字

考研的数学一和数学二是大学课程的高等数学一、二吗?

道德不一
天谴
不是--前者难==前者包括了后者的一大部分而数学一考察的范围比数学二更深数学一难于数学二数学一 高等数学 一、函数、极限、连续 (一)考试内容的变化 新增知识点:无 调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立” 删减知识点:无 (二)考试要求的变化 考试要求没有变化 二、一元函数微分学 (一)考试内容的变化 新增知识点:无 调整知识点:将“基本初等函数的导数导数和微分的四则运算”调整为“导数和微分的四则运算基本初等函数的导数” 删减知识点:无 (二)考试要求的变化 1.考试要求中将2005年的“4.会求分段函数的一阶、二阶导数”以及“5.会求隐函数和由参数方程所确定的函数以及反函数的导数”调整并合并为“4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。 2.将原来的第9条提前至第6条,足见“洛必达法则求未定式极限”的重要性。 三、一元函数积分学 (一)考试内容的变化 新增知识点:增加了“用定积分表达和计算质心” 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求没有变化 四、向量代数和空间解析几何 无变化 五、多元函数微分学 无变化 六、多元函数积分学 (一)考试内容的变化 新增知识点:无 调整知识点:将“二重积分、三重积分的概念及性质二重积分、三重积分的计算和应用”调整为“二重积分与三重积分的概念、性质、计算和应用” 删减知识点:无 (二)考试要求的变化 考试要求没有变化 七、无穷级数 无变化 八、常微分方程 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“了解微分方程及其解、阶、通解、初始条件和特解等概念”调整为“了解微分方程及其阶、解、通解、初始条件和特解等概念” 线性代数 一、行列式 无变化 二、矩阵 无变化 三、向量 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的关系”调整为“理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系” 四、线性方程组 无变化 五、矩阵的特征值和特征向量 无变化 六、二次型 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“3.了解二次型和对应矩阵的正定性及其判别法”调整为“3.理解正定二次型、正定矩阵的概念,并掌握其判别法” 概率论与数理统计 一、随机事件和概率 无变化 二、随机变量及其分布 无变化 三、二维随机变量及其分布(改为“多维随机变量及其分布”) (一)考试内容的变化 新增知识点:无 调整知识点: (1)将“二维随机变量及其概率分布”调整为“多维随机变量及其分布”; (2)将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度”; (3)将“两个随机变量简单函数的分布”调整为“两个及两个以上随机变量简单函数的分布” 删减知识点:无 (二)考试要求的变化 (1)将“1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质”调整为“1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质”, (2)将“2.理解随机变量的独立性及不相关的概念,掌握离散型和连续性随机变量独立的条件”调整为“2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件”, (3)将“4.会求两个随机变量简单函数的分布”调整为“4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布” 四、随机变量的数字特征 无变化 五、大数定律和中心极限定理 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 (1)将“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)”调整为“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)”; (2)将“3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布的中心极限定理)”调整为“3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)” 六、数理统计的基本概念 无变化 七、参数估计 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 将“4.了解区间估计的概念”调整为“4.理解区间估计的概念” 八、假设检验 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 将“2.了解单个及两个正态总体的均值和方差的假设检验”调整为“2.掌握单个及两个正态总体的均值和方差的假设检验” 数学二 高等数学 一、函数、极限、连续 (一)考试内容的变化 新增知识点:无 调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立” 删减知识点:无 (二)考试要求的变化 考试要求没有变化 二、一元函数微分学 (一)考试内容的变化 新增知识点:无 调整知识点:将“基本初等函数的导数导数和微分的四则运算”调整为“导数和微分的四则运算基本初等函数的导数” 删减知识点:无 (二)考试要求的变化 1.考试要求中将2005年的“4.会求分段函数的一阶、二阶导数”以及“5.会求隐函数和由参数方程所确定的函数以及反函数的导数”调整并合并为“4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。 2.将原来的第9条提前至第6条,足见“洛必达法则求未定式极限”的重要性。 三、一元函数积分学 (一)考试内容的变化 新增知识点:增加了“用定积分表达和计算质心” 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求没有变化 四、多元函数微积分学 无变化 五、常微分方程 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“了解微分方程及其解、阶、通解、初始条件和特解等概念”调整为“了解微分方程及其阶、解、通解、初始条件和特解等概念” 线性代数 一、行列式 无变化 二、矩阵 无变化 三、向量 (一)考试内容的变化 新增知识点:向量的内积线性无关向量组的正交规范化方法 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中增加“5.了解内积的概念,掌握线性无关向量组的正交规范化的施密特(Schmidt)方法” 四、线性方程组 无变化 五、矩阵的特征值和特征向量 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 1.将“2.了解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”调整为“2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵” 2.将“3.了解实对称矩阵地特征值和特征向量的性质”调整为“3.理解实对称矩阵地特征值和特征向量的性质” 数学三 微积分 一、函数、极限、连续 (一)考试内容的变化 新增知识点:无 调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立” 删减知识点:无 (二)考试要求的变化 1.考试要求中将“9.了解连续函数的性质合初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用”调整为“9.了解连续函数的性质合初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质” 二、一元函数微分学 (一)考试内容的变化 新增知识点:无 调整知识点:将导数的概念及运算法则与微分的概念及运算法则合并 删减知识点:无 (二)考试要求的变化 1.考试要求中“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法”调整并合并为“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;会求分段函数的导数,会求反函数与隐函数的导数”。 三、一元函数积分学 无变化 四、多元函数微积分学 无变化 五、无穷级数 无变化 六、常微分方程与差分方程 (一)考试内容的变化 新增知识点:线性微分方程解的性质及解的结构定理 调整知识点:无 删减知识点:无 (二)考试要求的变化 无变化 线性代数 一、行列式 无变化 二、矩阵 无变化 三、向量 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的关系”调整为“理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系” 四、线性方程组 无变化 五、矩阵的特征值和特征向量 无变化 六、二次型 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 考试要求中将“3.了解二次型和对应矩阵的正定性及其判别法”调整为“3.理解正定二次型、正定矩阵的概念,并掌握其判别法” 概率论与数理统计 一、随机事件和概率 无变化 二、随机变量及其分布 无变化 三、多维随机变量及其分布 (一)考试内容的变化 新增知识点:无 调整知识点:将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度” 删减知识点:无 (二)考试要求的变化 1.考试要求中将“2.理解随机变量的独立性及不相关的概念,掌握离散型和连续性随机变量独立的条件”调整为“2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件” 四、随机变量的数字特征 无变化 五、大数定律和中心极限定理 无变化 六、数理统计的基本概念 无变化 七、参数估计 无变化 八、假设检验 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 1.将“2.了解单个及两个正态总体的均值和方差的假设检验”调整为“2.掌握单个及两个正态总体的均值和方差的假设检验” 数学四 微积分 一、函数、极限、连续 (一)考试内容的变化 新增知识点:无 调整知识点:无 删减知识点:无 (二)考试要求的变化 1.考试要求中将“9.了解连续函数的性质合初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用”调整为“9.了解连续函数的性质合初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质” 二、一元函数微分学 (一)考试内容的变化 新增知识点:无 调整知识点:将导数的概念及运算法则与微分的概念及运算法则合并 删减知识点:无 (二)考试要求的变化 1.考试要求中将原来的“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法”调整并合并为“2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;会求分段函数的导数,会求反函数与隐函数的导数”。 2.将“9.掌握函数作图的基本步骤和方法,会作简单函数的图形”调整为“9.会作简单函数的图形”。 三、一元函数积分学 无变化 四、多元函数微积分学 (一)考试内容的变化 新增知识点:无 调整知识点:将“无界区域上简单二重积分的计算”调整为“无界区域上的广义二重积分” 删减知识点:无 (二)考试要求的变化 1.考试要求中将“5.……会计算无界区域上的较简单的二重积分”调整为“5.……了解无界区域上的较简单的广义二重积分并会计算” 五、常微分方程 无变化 线性代数 一、行列式 无变化 二、矩阵 无变化 三、向量 无变化 四、线性方程组 无变化 五、矩阵的特征值和特征向量 无变化 概率论与数理统计 一、随机事件和概率 无变化 二、随机变量及其分布 无变化 三、多维随机变量及其分布 (一)考试内容的变化 1.新增知识点:无 2.调整知识点:将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度” 3.删减知识点:无(二)考试要求的变化 1.考试要求中将将“2.理解随机变量的独立性及不相关的概念,掌握随机变量独立的条件”调整为“2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件” 四、随机变量的数字特征 无变化 五、中心极限定理 无变化 下面网站可以下载大纲==2006考研数学大纲变化(完全版) 参考资料:http://www.stu8.cn/showdown.asp?soft_id=208

考研数二有哪些内容?

咬者
了别
2011考研数学大纲内容 数二一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 考试要求1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.就是没有概率 其他的高等数学和线性代数都要考 只有部分章节不会出题

2011 考研数学二 62分能过国家线吗

焉往
马里布
工科数学?还真悬点儿……你以北大的分数线做一个潜在标准。北大05-06两年:325,345 当年数学:66,6808年:310 数学:6611年:325 数学:?所以你各种推算,最后得出的是数学成绩在65-69之间。而且主要今年的数学大家似乎考的都不错。专家估均分70。(06和08两年的砖家估分也都是70)兄弟,不是打击你,但是历来国家线都没有那么低过,今年并不是比以往难的题目,分数线也不大可能降低到这程度。楼上说的90分也不对。国家线不是及格线。

考研数学二、数学三的历年平均分

莫动则平
叶青
2018数学全国平均分数一 61.94分 样本91134数二 61.22分 样本78360数三 64.55分 样本78497    2014年考研数学平均分数一:67数二:71数三:692014年考研数学难度较大,这在平均分中就可以看出。小题较难,大题不难。很多考生直言在考场中出现心理崩溃的现象。2013年考研数学平均分数一:73.86数二:78.49数三:81.802013年数学难度还是比较大的,出题思路与往年不同,尤其是数学2,很多考生反映难度非常大,上手非常不易。2012年考研数学平均分数一:80.11数二:82数三:81.542012年普遍反映数学考研较简单,考察的题目也交际处,这从创新高的平均分中也可以看出。2011年考研数学平均分数一:77.16数二:80.66数三:82.84据说是五年来的新低,很多考生抱怨区别度不大。呵呵,有时候出题方也是相当难做人的有木有。2010年考研数学平均分数一:70数二:64数三:73.462010年的数学打破了历年数学出题的规律,特别是概论的大题,一般是直接考二维随机变量和估计,但2010年考的更深了拓展资料:数二大纲编辑考试科目高等数学、线性代数形式结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。2、答题方式答题方式为闭卷、笔试。3、试卷内容结构高等数学 78%线性代数  22%4、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分参考资料:百度百科:考研数学

考研数学二难度的问题

马缨丹
咖啡镇
数学一考察范围大,难度最高数学二考察范围最小,难度与数一相当数学三的考察范围小于数一,大于数二,难度较小

大家觉得2011年的考研数学难度如何?

马永贞
此下德也
同意,确实很难,我也觉得难。

2011年考研数学三真题及答案

九罭
敌基督
去百度文库,查看完整内容>内容来自用户:100104262011年考研数学三真题一、选择题(18小题,每小题4分,共32分。下列媒体给出的四个选项中,只有一个选项是符合题目要求的。)(1)已知当时,与是等价无穷小,则(A)(B)(C)(D)【答案】C。【解析】【方法一】(洛必达法则)(洛必达法则)()由此得。【方法二】由泰勒公式知则故。【方法三】故综上所述,本题正确答案是C。【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算高等数学—一元函数微分学—洛必达(L'Hospital)法则(2)已知在处可导,且,则(A)(B)(C)(D)0【答案】B。【解析】【方法一】加项减项凑处导数定义【方法二】拆项用导数定义由于,由导数定义知所以【方法三】排除法:选择符合条件的具体函数,则而对于,显然选项(A)(C)(D)都是错误的,故应选(B)【方法四】由于在处可导,则综上所述,本题正确答案是B。【考点】高等数学—一元函数微分学—导数和微分的概念,导数和微分的四则运算(3)设是数列,则下列命题正确的是(A)若收敛,则收敛。(B)若收敛,则收敛。(C)若收敛,则收敛。(D)若收敛,则收敛。【答案】A。【解析】若收敛,则该级数加括号后得到的级数仍收敛(A)【考点】高等数学—多元函数微积分学—(18)(23)