欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

数据分析师会看研究生是专硕还是学硕么

孟喜
可谓苦矣
这要数据分析师看干嘛,我就会看.........研究生是专硕还是学硕直接看他的专业代码就行。 研究生考试的专业是二级学科,这些二级学科都有六位数代码。比如:020204金融学,025100金融硕士。两个同为金融专业,一般不了解考研的人不知道有什么区别。只要记住一点,六位数代码的第三位只要是5,就是专业,是其他的都是学硕。 这些也是我以前考研的时候听天道考研的老师教我们的,不知道我回答的是不是你想要的。希望对你有帮助。

求助!考硕士研究生对数据分析师的就业及其薪资意义大不大?我是否该放弃考研?

蜚大屋者
幻游传
1:数学不好的情况下,不建议考研及转数据分析师,因为数据分析/数据挖掘要求的基础比较高:2:关于现在所处的大数据时代,而中国在这方面又处于起步阶段,所以需求肯定是有的。3:研究生分学的好与学得不好。所以肚里有货才最踏实稳定。:学到一技之长才是你应该思考的。考虑好一个方向,不要犹豫,奔着它走。坚持住。你就是拔尖人才。4:还有网上有很多视频可以学习,这个一定要有耐力。万分感谢您的回答!其实我的数学属于一般的水平,不差也不是特别好。您的建议让我坚定了一丝继续数据分析的信心。爱您的那句话,“考虑好一个方向,不要犹豫,奔着它走。坚持住。你就是拔尖人才。”我发现应数系,计科系,等几个系都有与数据分析相关的专业,请问该选择哪个系呢?也就是说你是决心要考研了。这个要看导师的方向。这两个都可以,还有经管系也可以。选择哪个都行。拣最容易考的那个专业吧。数学每年都招好多研究生;计算机考研的人较少,去公司的较多;经管英语是个坎,英语好的人适合考。

MEM在职研究生,数据分析方向的有哪些学校?

何其下邪
短后之衣
华东理工大学也是有的数据分析 是目前的一个热点 有些院校虽然没有单独列出来 但不代表就没有的哈譬如同济大学

数据分析:今年大四,想从事数据分析行业,目前问题是:选择读研究生跟就业不知道怎么选择?

巴河镇
坂高
数据分析对学历要求并没有那么高,本科就够了,但是从竞争的角度来看,现在找数据分析工作的同学们有不少学历背景和基础不错的,相对来说初级的职位确并不多。你可以读研为目标,同时看下是否有合适的工作机会。如果有合适的工作,先考虑积累工作经验。

请问你是数据挖掘的研究生?数据挖掘研究生阶段都学什么?

廷无忠臣
杀民
  数据挖掘(Data Mining)就是从大量数据中发现潜在规律、提取有用知识的方法和技术。因为与数据库密切相关,又称为数据库知识发现(Knowledge Discovery in Databases,KDD) ,就是将高级智能计算技术应用于大量数据中,让计算机在有人或无人指导的情况下从海量数据中发现潜在的,有用的模式(也叫知识)。   广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘。从这点看来,数据挖掘就是BI(商业智能)。但从技术术语上说,数据挖掘(Data Mining)特指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。数据挖掘的主要功能   1. 分类:按照分析对象的属性、特征,建立不同的组类来描述事物。例如:银行部门根据以前的数据将客户分成了不同的类别,现在就可以根据这些来区分新申请贷款的客户,以采取相应的贷款方案。   2. 聚类:识别出分析对内在的规则,按照这些规则把对象分成若干类。例如:将申请人分为高度风险申请者,中度风险申请者,低度风险申请者。   3. 关联规则和序列模式的发现:关联是某种事物发生时其他事物会发生的这样一种联系。例如:每天购买啤酒的人也有可能购买香烟,比重有多大,可以通过关联的支持度和可信度来描述。与关联不同,序列是一种纵向的联系。例如:今天银行调整利率,明天股市的变化。   4. 预测:把握分析对象发展的规律,对未来的趋势做出预见。例如:对未来经济发展的判断。   5. 偏差的检测:对分析对象的少数的、极端的特例的描述,揭示内在的原因。例如:在银行的100万笔交易中有500例的欺诈行为,银行为了稳健经营,就要发现这500例的内在因素,减小以后经营的风险。   需要注意的是:数据挖掘的各项功能不是独立存在的,在数据挖掘中互相联系,发挥作用。数据挖掘的方法及工具   作为一门处理数据的新兴技术,数据挖掘有许多的新特征。首先,数据挖掘面对的是海量的数据,这也是数据挖掘产生的原因。其次,数据可能是不完全的、有噪声的、随机的,有复杂的数据结构,维数大。最后,数据挖掘是许多学科的交叉,运用了统计学,计算机,数学等学科的技术。以下是常见和应用最广泛的算法和模型:   (1) 传统统计方法:① 抽样技术:我们面对的是大量的数据,对所有的数据进行分析是不可能的也是没有必要的,就要在理论的指导下进行合理的抽样。② 多元统计分析:因子分析,聚类分析等。③ 统计预测方法,如回归分析,时间序列分析等。   (2) 可视化技术:用图表等方式把数据特征用直观地表述出来,如直方图等,这其中运用的许多描述统计的方法。可视化技术面对的一个难题是高维数据的可视化。职业能力要求基本能力要求   数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。   一、专业技能   硕士以上学历,数据挖掘、统计学、数据库相关专业,熟练掌握关系数据库技术,具有数据库系统开发经验   熟练掌握常用的数据挖掘算法   具备数理统计理论基础,并熟悉常用的统计工具软件   二、行业知识   具有相关的行业知识,或者能够很快熟悉相关的行业知识   三、合作精神   具有良好的团队合作精神,能够主动和项目中其他成员紧密合作   四、客户关系能力   具有良好的客户沟通能力,能够明确阐述数据挖掘项目的重点和难点,善于调整客户对数据挖掘的误解和过高期望   具有良好的知识转移能力,能够尽快地让模型维护人员了解并掌握数据挖掘方法论及建模实施能力进阶能力要求   数据挖掘人员具备如下条件,可以提高数据挖掘项目的实施效率,缩短项目周期。   具有数据仓库项目实施经验,熟悉数据仓库技术及方法论   熟练掌握SQL语言,包括复杂查询、性能调优   熟练掌握ETL开发工具和技术   熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的各种统计图形技术   善于将挖掘结果和客户的业务管理相结合,根据数据挖掘的成果向客户提供有价值的可行性操作方案应用及就业领域   当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation & Classification)、背景分析(Profile Analysis)、交叉销售(Cross-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。如果你访问著名的亚马逊网上书店(www.amazon.com),会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book also bought”,这背后就是数据挖掘技术在发挥作用。   数据挖掘的对象是某一专业领域中积累的数据;挖掘过程是一个人机交互、多次反复的过程;挖掘的结果要应用于该专业。因此数据挖掘的整个过程都离不开应用领域的专业知识。“Business First, technique second”是数据挖掘的特点。因此学习数据挖掘不意味着丢弃原有专业知识和经验。相反,有其它行业背景是从事数据挖掘的一大优势。如有销售,财务,机械,制造,call center等工作经验的,通过学习数据挖掘,可以提升个人职业层次,在不改变原专业的情况下,从原来的事务型角色向分析型角色转变。从80年代末的初露头角到90年代末的广泛应用,以数据挖掘为核心的商业智能(BI)已经成为IT及其它行业中的一个新宠。数据采集分析专员   职位介绍:数据采集分析专员的主要职责是把公司运营的数据收集起来,再从中挖掘出规律性的信息来指导公司的战略方向。这个职位常被忽略,但相当重要。由于数据库技术最先出现于计算机领域,同时计算机数据库具有海量存储、查找迅速、分析半自动化等特点,数据采集分析专员最先出现于计算机行业,后来随着计算机应用的普及扩展到了各个行业。该职位一般提供给懂数据库应用和具有一定统计分析能力的人。有计算机特长的统计专业人员,或学过数据挖掘的计算机专业人员都可以胜任此工作,不过最好能够对所在行业的市场情况具有一定的了解。   求职建议:由于很多公司追求短期利益而不注重长期战略的现状,目前国内很多企业对此职位的重视程度不够。但大型公司、外企对此职位的重视程度较高,随着时间的推移该职位会有升温的趋势。另外,数据采集分析专员很容易获得行业经验,他们在分析过程中能够很轻易地把握该行业的市场情况、客户习惯、渠道分布等关键情况,因此如果想在某行创业,从数据采集分析专员干起是一个不错的选择。市场/数据分析师   1. 市场数据分析是现代市场营销科学必不可少的关键环节: Marketing/Data Analyst从业最多的行业: Direct Marketing (直接面向客户的市场营销) 吧,自90年代以来, Direct Marketing越来越成为公司推销其产品的主要手段。根据加拿大市场营销组织(Canadian Marketing Association)的统计数据: 仅1999年一年 Direct Marketing就创造了470000 个工作机会。从1999至2000,工作职位又增加了30000个。为什么Direct Marketing需要这么多Analyst呢? 举个例子, 随着商业竞争日益加剧,公司希望能最大限度的从广告中得到销售回报, 他们希望能有的用户来响应他们的广告。所以他们就必需要在投放广告之前做大量的市场分析工作。例如,根据自己的产品结合目标市场顾客的家庭收入,教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告,购买自己的产品或成为客户,从而广告只针对这些特定的客户群。这样有的放矢的筛选广告的投放市场既节省开销又提高了销售回报率。但是所有的这些分析都是基于数据库,通过数据处理,挖掘,建模得出的,其间,市场分析师的工作是必不可少的。   2. 行业适应性强: 几乎所有的行业都会应用到数据, 所以作为一名数据/市场分析师不仅仅可以在华人传统的IT行业就业,也可以在政府,银行,零售,医药业,制造业和交通传输等领域服务。现状与前景   数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。在中国各重点院校中都已经开了数据挖掘的课程或研究课题。比较著名的有中科院计算所、复旦大学、清华大学等。另外,政府机构和大型企业也开始重视这个领域。   据IDC对欧洲和北美62家采用了商务智能技术的企业的调查分析发现,这些企业的3年平均投资回报率为401%,其中25%的企业的投资回报率超过600%。调查结果还显示,一个企业要想在复杂的环境中获得成功,高层管理者必须能够控制极其复杂的商业结构,若没有详实的事实和数据支持,是很难办到的。因此,随着数据挖掘技术的不断改进和日益成熟,它必将被的用户采用,使的管理者得到的商务智能。   根据IDC(International Data Corporation)预测说2004年估计BI行业市场在140亿美元。现在,随着我国加入WTO,我国在许多领域,如金融、保险等领域将逐步对外开放,这就意味着许多企业将面临来自国际大型跨国公司的巨大竞争压力。国外发达国家各种企业采用商务智能的水平已经远远超过了我国。美国Palo Alto 管理集团公司1999年对欧洲、北美和日本375家大中型企业的商务智能技术的采用情况进行了调查。结果显示,在金融领域,商务智能技术的应用水平已经达到或接近70%,在营销领域也达到50%,并且在未来的3年中,各个应用领域对该技术的采纳水平都将提高约50%。   现在,许多企业都把数据看成宝贵的财富,纷纷利用商务智能发现其中隐藏的信息,借此获得巨额的回报。国内暂时还没有官方关于数据挖掘行业本身的市场统计分析报告,但是国内数据挖掘在各个行业都有一定的研究。据国外专家预测,在今后的5—10年内,随着数据量的日益积累以及计算机的广泛应用,数据挖掘将在中国形成一个产业。   众所周知,IT就业市场竞争已经相当激烈,而数据处理的核心技术---数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大。如果能将数据挖掘技术与个人已有专业知识相结合,您必将开辟职业生涯的新天地! 职业薪酬   就目前来看,和大多IT业的职位一样,数据仓库和数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺,在二线成熟,高端数据仓库和数据挖掘方面的人才尤其稀少。高端数据仓库和数据挖掘人才需要熟悉多个行业,至少有3年以上大型DWH和BI经验,英语读写流利,具有项目推动能力,这样的人才年薪能达到20万以上。职业认证   1、SAS认证的应用行业及职业前景SAS全球专业认证是国际上公认的数据挖掘和商业智能领域的权威认证,随着我国IT环境和应用的日渐成熟,以上两个领域将有极大的行业发展空间。获取SAS全球专业认证,为您在数据挖掘、分析方法论领域积累丰富经验奠定良好的基础,帮助您开辟职业发展的新天地。   2、SAS认证的有效期   目前SAS五级认证没有特定有效期,但是时间太久或版本太老的认证证书会有所贬值。   3、五级认证的关系   五级认证为递进式关系,即只有通过上一级考试科目才能参加下一级认证考试。   4、SAS全球认证的考试方式   考试为上机考试,时间2个小时,共70道客观题。相关链接   随着中国物流行业的整体快速发展,物流信息化建设也取得一定进展。无论在IT硬件市场、软件市场还是信息服务市场,物流行业都具有了一定的投资规模,近两年的总投资额均在20-30亿元之间。政府对现代物流业发展的积极支持、物流市场竞争的加剧等因素有力地促进了物流信息化建设的稳步发展。   易观国际最新报告《中国物流行业信息化年度综合报告2006》中指出,中国物流业正在从传统模式向现代模式实现整体转变,现代物流模式将引导物流业信息化需求,而产生这种转变的基本动力来自市场需求。报告中的数据显示:2006-2010年,传统物流企业IT投入规模将累计超过100亿元人民币。2006-2010年,第三方物流企业IT投入规模将累计超过20亿元人民币。   由于目前行业应用软件系统在作业层面对终端设备的硬件提出的应用要求较高,而软件与硬件的集成性普遍不理想,对应性单一,因此企业将对软件硬件设备的集成提出更高要求。   物流行业软件系统研发将的考虑运筹学与数据挖掘技术,专业的服务商将更有利于帮助解决研发问题。   物流科学的理论基础来源于运筹学,并且非常强调在繁杂的数据处理中找到关联关系(基于成本-服务水平体系),因此数据挖掘技术对于相关的软件系统显得更为重。

大数据分析在职研究生怎么样

大坝头
往矣
数据分析课程在学习目标方面,明确学习目标,设定简洁清晰的学习目标;在课程设置方面,课程之间相互配合、逻辑关系清晰、避免内容上重复遗漏、足够灵活并应能体现其应用型学科的特点;在教学内容方面,突出数据的重要性,使用专业统计软件,增加统计模型类课程,重视统计计算,整合传统教学内容。自己的专业选择藏着自己的性情和兴趣,自己走过的路,以及自己未来的职业和生活。目前人大院校比较好,想报考的学员可以在人大院校报考。http://ruc.eour.cn

关于研究生读大数据处理,云计算的问题?

敢问至道
香笺泪
云计算与大数据是什么:1、大数据本身除了要有数据、采集、汇聚一定量的数据之外,更重要的是数据的处理、挖掘、分析、可视化、应用这样一整套的过程。2、关于大数据的话题,基本围绕三个问题展开:一是数据从哪里来,二是数据如何进行分析,三是数据如何进行商品化。任何大数据都是以应用为主的,在未来,通过多维度、多复合的大数据的精准挖掘,最终提供出优质的商务解决方案才是最关键的。3、数据的三个来源分别是政府、企业行业和个人消费。政府数据做了授权,但由于法律和其他方面的不健全,政府数据被滥用。消费者数据来源于电信、金融或大企业,流量入口处的数据将被自动抓取,数据提供商可以提供所有维度的数据,但每一个都是局部。4、数据优化商在大数据产业链里要想长久发展,必须精通大数据的模型、算法以及数据特征,同时对行业及生态要有明显的敏感性。而算法提供商如果仅仅依赖单纯算法,未来将成为成长软肋。应用提供商最贴近客户、最熟悉客户需求,同时做的是最后的数据整合,在产业链上可能发展空间更大。而”云计算”带来会带来以种变革——由专业网络公司来搭建计算机存储、运算中心,用户通过一根网线借助浏览器就可以很方便的访问,把“云”做为资料存储以及应用服务的中心。云计算与大数据就业前景:随着时代的发展,互联网的普及,越来越多的地方会用到云计算与大数据,无论是计算机行业,还是汽车领域,云计算与大数据专业人才的缺口都是比较大的,那么云计算和大数据的就业前景是非常好的。研究生考试科目:首先最好了解一下要报考学校云计算与大数据专业要考什么,每个学校的考查科目会有所不同。可以去学校的官网查看云计算与大数据要考什么。如何备考研究生:备考研究生是一个需要意志力的过程,首先要有一个整体的复习规划,考研根据个人情况,最好不要提前很久就开始准备,比较理想的情况是8个月,因为提前很久开始准备,到了后期冲刺阶段,很多考生就很觉得很疲倦。考研笔试过关了之后还有复试,复试线由大部分招生单位都会公布这些数据,或者在研究生院,也有的在各自院系以通知的形式发布。每个学校的复试线会有所不同。过了复试线只是意味着有机会参加复试,并不一定能被录取。所以这里面还有一个最低录取线。这条线肯定比复试线稍高一些。因此,考研复习要多下功夫,初试一定要考过复试线。如此,才有可能取得最终的成功。不要着眼于刚刚过复试线。

考研科目计算机科学与技术和计算机技术有什么区别

地之下也
不能爱
计算机科学与技术属于研究生学科,计算机(应用)技术属于计算机科学与技术学科下面的一个专业。计算机科学与技术属于一级学科(学科代码0812),包含了三个专业,其中就有计算机应用技术(专业代码081203),另外两个二级学科分别是:1. 计算机系统结构(专业代码081201)2. 计算机软件与理论(专业代码081202)拓展资料研究生计算机应用技术研究方向简介:一、数据库与信息安全:主要研究空间数据库及实时数据库平台,研究安全数据库及隐通道分析方法,研究智能数据处理与分析,研究Web数据库挖掘技术,研究网络系统安全技术,研究开发各类信息系统。该方向目前正承担着多项国家“863”计划、国家自然科学基金、江苏省科技支撑计划、教育部高校博士点基金、江苏省高校自然科学基金、镇江市科技支撑计划和企事业横向合作课题。二、计算机图形学与人机交互技术:主要研究三维模型重构技术、三维模型水印技术,研究基于视觉-语音的情感计算技术,研究基于人脸的身份认证和疲劳检测技术,研究视频信息检索与监控技术,研究E-learning环境的个性化学习支撑技术,研究协作虚拟环境支撑技术,同时研究开发相应的应用系统。三、人工智能及应用:主要研究数据挖掘与知识发现算法,研究基于先验信息的神经网络优化方法,研究医学图像聚类分析方法,研究基于内容的医学图像检索技术,研究多智能体理论与技术,研究机器学习与自然语言理解方法。四、多媒体技术:主要研究数字图像处理技术,研究视频对象目标检测与跟踪,研究多媒体数据压缩与编码技术,研究多媒体数字水印与信息安全技术。五、计算机控制技术:主要研究计算机控制的理论与技术,研究智能家电控制技术,研究环境检测与控制技术,研究基于传感器网络的检测与控制技术,研究相关行业的计算机控制应用技术。参考资料:百度百科:研究生专业学科目录

中国人民大学大数据分析在职研究生含金量高吗?

无益
师物
中国人民大学大数据在职研究生作为一个热门专业,报考人数较多,其中,统计学院、信息资源管理学院等多个学院都开设此专业。中国人民大学统计学科是新中国经济学科中最早设立的统计学系,也成为统计学全国重点学科。学院依托强有力的专业优势会对学员学习大数据有更大帮助。中国人民大学在职研究生内容了解。