生民
我们先来了解一下两者的区别。一、意义不同数据分析师 是数据师Datician的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法工程师就是利用算法处理事物的人。二、薪资不同数据分析师的职位平均工资大约在¥9086;算法工程师职位平均工资水平(元/月-税前)大约在¥1200之上。数据分析师和算法工程师哪个难?由上可知算法工程师比数据分析师要难学。此外,企业对于数据分析师的技能要求很高,具体要求如下:1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效地开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。重要作用。算法工程师需要掌握的技能1. 编程:PYTHON,JAVA,C2. 数据结构与算法3. 机器学习算法4. PAPER阅读能力5. 造轮子的能力对于算法工程师,有别于数据挖掘工程师的第一个区别就是对于传统的算法和数据结构的要求。 我自身不是计算机科班出身,在我工作的第一年压根没有接触过这一块,也从没打算去学这一块。 我第一次知道数据结构和算法的时候是去面试一家英语流利说的公司,当时面试官让我写一下斐波那契数列的伪代码,我听都没有听说过,于是面试官又让我写一下如何从一组数列当中最快的寻找出中位数,我依旧不知所措,因为平时都是习惯用函数,还从没想过真正的实现方式是怎样的。面试官很疑惑也很遗憾的当场就对我说:我觉得你可能不适合我们的岗位。数据结构和算法应该是必备的技能,算法工程师应该对用常用的知识点有深入理解,能够在面对不同项目场景的时候灵活选择数据机构和算法。第二点是机器学习算法,这个地方肯定会比之前的数据挖掘算法要求高很多。除了常用机器学习算法能够手推之外,还要对算法本身有更深入的思考。我记得我面试阿里的时候面试官抛出这么几个问题,说如果boosting算法不使用决策树,而使用SVM会怎样,或者说每一轮迭代都使用不同模型,比如第一次是决策树,第二次是SVM,那么会怎样? 还有一个就是logistic regression这些算法为何没有使用ada,mone这些方法,能不能用?有什么优缺点等等。