欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学二都考哪些??哪些不考

便当
慧文
考研数学二考试科目:只考高数(78%)和线代(22%) ,也就是不考概率。高等数学:同济六版高等数学中除了第七章微分方程考带*的伯努力方程外,其余带*号的都不考;所有”近似“的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算,矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。概率与数理统计:不考。扩展资料:全国硕士研究生统一招生考试(Unified National Graate Entrance Examination),简称“考研”。是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(部分专业通过全国联考的方式进行命题)。硕士研究生招生方式分为全日制和非全日制两种。培养模式分为学术型硕士和专业型硕士研究生两种。参考资料:百度百科_考研数学二大纲

考研初试数二考什么内容?

狗故事
花簪
考研数学二考试科目:只考高数(78%)和线代(22%) ,也就是不考概率。高等数学:同济六版高等数学中除了第七章微分方程考带*的伯努力方程外,其余带*号的都不考;所有”近似“的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算,矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。概率与数理统计:不考。

数二考研范围有哪些?

楚王觞之
大雪崩
高等数学80%、线性代数20%。硕士研究生招生考试数学二试卷满分为150分;考试时间为180分钟;答题方式为闭卷、笔试。试卷内容结构为高等数学80%;线性代数20%。试卷题型结构为:单选题10小题,每题5分,共50分;填空题6小题,每题5分,共30分;解答题(包括证明题)6小题,共70分。扩展资料:考研数学二的相关要求规定:1、须使用数学二的招生专业为工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。2、作为公共基础课,考研数学试题以基础性、生活类试题为主,考研数学试题的内容要求涵盖所有考纲所要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。参考资料来源:百度百科-考研数学二

考研数学二包括哪些内容

天尊地卑
狼人镇
考研数二的大纲可能每年有些许变动。以当年发布的数二大纲为准。今年的大纲内容较多,详细的内容有5页文档,可以在文库查看。例如:一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限等。今年的题型和分值分布大致如下:2017考研数学(二)考试大纲 考试科目:高等数学、线性代数 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 高等教学 约78% 线性代数 约22% 四、试卷题型结构 试卷题型结构为: 单项选择题 8小题,每小题4分,共32分 填空题 6小题,每小题4分,共24分 解答题(包括证明题) 9小题,共94分

考研数学二包括哪些课程?

老同学
渭阳
考试科目(一)高等数学(二)线性代数考试形式和试卷结构(一)试卷满分及考试时间1.试卷满分为150分2.考试时间为180分钟。(二)答题方式1.答题方式为闭卷2.笔试。(三)试卷内容结构1.高等数学 78%2.线性代数 22%(四)试卷题型结构1.试卷题型结构为:单项选择题 8小题,每题4分,共32分2.填空题 6小题,每题4分,共24分3.解答题(包括证明题) 9小题,共94分详情请在百度搜素“考研数学--百度百科”,里面有更详尽的解释。请放心使用有问题的话请满意请及时采纳,谢谢你的采纳将是我继续努力帮助他人的最强动力哦!

请问考研数二考什么?有哪些参考书?

辞郎洲
菊里
考研数学二只考高等数学和线性代数,概率和数理统计不考。数学二(高等数学,分值比例占78%)同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考。所有近似的问题都不考;第四章不定积分不考积分表的使用。不考第八章空间解析几何与向量代数,除去第九章后面内容不考。数学二(线性代数,分值比例占22%)同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。考研数学参考书:复习初期:看课本,结合《李永乐考研数学复习全书(数二)》。复习中期:做历年真题,结合《李永乐400题》。其他考研数学参考书:《金榜图书 李永乐·王式安唯一考研数学系列》《张宇考研数学系列丛书:张宇考研数学题源探析经》《张宇考研数学题源探析经典1000题》《李永乐·王式安唯一考研数》等。扩展资料考研数学中线性代数的复习线性代数相对于大家更为熟悉的高数来说,其实是比较容易的,其计算技巧相对较少,而且常考的题型也相对固定。该科目有5道题:2个选择、1个填空、2道解答题。从近十年考研数学真题来看,选择题和填空题多数情况下是考查知识点综合性较小,经常考如行列式计算、矩阵初等变换、向量组线性相关(无关)、线性方程组的解等,难度较低。而对两个解答题的考查,基本上都是多个知识点的综合,如矩阵的特征值和特征向量、矩阵对角化、二次型等知识点的综合运用,方法很常规,有时需要一定的技巧。只要同学们平时知识掌握得牢固,线性代数基本不会丢分。参考资料来源:中国研究生招生信息网官网-网报公告

考研什么时候开始区分数学一和数学二

思虑善否
明辨
考研数学一和数学二是针对工科类才分的类。数一、数二两者的区别如下:1、招生专业的不同:须使用数学一的招生专业:(1)工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术等20个一级学科中所有的二级学科、专业。(2)授工学学位的管理科学与工程一级学科。须使用数学二的招生专业:工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。2、考试科目不同:数一考试科目为:高等数学、线性代数、概率论与数理统计数二考试科目为:高等数学、线性代数扩展资料:考研数一试卷结构:1、试卷满分及考试时间:试卷满分为150分,考试时间为180分钟。2、答题方式:答题方式为闭卷、笔试。3、试卷内容结构:高等数学56%;线性代数22%;概率论与数理统计22%4、试卷题型结构:单选题 8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分考研数二试卷结构:1、试卷满分及考试时间:试卷满分为100分,考试时间为180分钟。2、答题方式:答题方式为闭卷,笔试。3、试卷内容结构:高等数学78%;线性代数22%。4、试卷题型结构为:单项选择题 8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分。参考资料来源:考研数学-百度百科考研数学一大纲-百度百科考研数学二大纲-百度百科

考研中的一区和二区是怎么划分的呀?

系于末度
皇华
一区为北京、天津、河北、山西、辽宁、吉林、黑龙江、上海、江苏、浙江、安徽、福建、江西、山东、河南、湖北、湖南、广东、重庆、四川、山西21省(市);二区为内蒙古、广西、海南、贵州、云南、西藏、甘肃、青海、宁夏、新疆等10省(市)。

考研中,数二中的高数不考哪些内容?

诗以道志
恐怖洞
只需要知道考什么就可以了~不需要知道不考什么~~下面是数学二大纲规定涉及到的内容:考试内容之高等数学函数、极限、连续考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法刚求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 >0时,f(x)的图形是凹的;当 <0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用考试要求1. 理解原函数的概念,理解不定积分和定积分的概念.2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3. 会求有理函数、三角函数有理式和简单无理函数的积分.4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5. 了解反常积分的概念,会计算反常积分.6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.多元函数微积分学考试要求1. 了解多元函数的概念,了解二元函数的几何意义.2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4. 了解多元函数极值和条件极值的概念,并求解一些简单的应用问题.5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).常微分方程考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程3. 会用降阶法解下列形式的微分方程: , 和 .4. 理解二阶线性微分方程解的性质及解的结构定理.5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7. 会用微分方程解决一些简单的应用问题.考试内容之线性代数行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.向量考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.线性方程组考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,3.理解正定二次型、正定矩阵的概念,并掌握其判别法