欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2021考研数学(二)考试大纲

郅都
三婶
2021考研数学(二)考试大纲:一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则∶单调有界准则和夹逼准则两个重要极限∶重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系,6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的值和最小值的求法及其应用。2021考研数学(二)考试大纲的内容小编就说到这里了,大家要认真复习。关于考研考试的备考技巧,备考干货,新闻资讯,成绩查询,准考证打印入口,准考证打印时间等内容,小编会持续更新。祝愿各位考生都能顺利通过考试。考入理想院校。

考研数学二范围(同济第六版)

安全感
贾晋蜀
1、考研数学二只考高等数学和线性代数,概率和数理统计不考。2、具体情况:(1)高等数学(分值比例占总分78%)同济六版高等数学,除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。(2)线性代数(分值比例占总分22%)同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。扩展资料:考研数学二大纲之高等数学一、函数、极限、连续1、考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形;初等函数函数关系的建立数列极限与函数极限的定义及其性质;函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念;函数间断点的类型 初等函数的连续性;闭区间上连续函数的性质。2、考试要求(1)、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。(2)、了解函数的有界性、单调性、周期性和奇偶性。(3)、理解复合函数及分段函数的概念了解反函数及隐函数的概念。(4)、掌握基本初等函数的性质及其图形,了解初等函数的概念。(5)、 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。(6)、掌握极限的性质及四则运算法则。(7)、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。(8)、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。(9)、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。(10)、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分1、考试要求(1)、 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。(2)、 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。(3)、了解高阶导数的概念,会求简单函数的高阶导数。(4)、 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。(5)、 理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理。(6)、掌握用洛必达法则求未定式极限的方法。(7)、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。(8)、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。(9)、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。三、一元函数积分1、考试内容原函数和不定积分的概念;不定积分的基本性质 基本积分公式定积分的概念和基本性质;定积分中值定理积分上限的函数及其导数;牛顿-莱布尼茨(Newton-Leibniz)公式;不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用2、考试要求(1)、理解原函数的概念,理解不定积分和定积分的概念。(2)、 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。(3)、 会求有理函数、三角函数有理式和简单无理函数的积分。(4)、理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。(5)、了解反常积分的概念,会计算反常积分。(6)、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。四、多元函数微积分学1、考试要求(1)、 了解多元函数的概念,了解二元函数的几何意义。(2)、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。(3)、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。(4)、 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.(5)、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程1、考试内容常微分方程的基本概念;变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的简单应用。2、考试要求(1)、了解微分方程及其阶、解、通解、初始条件和特解等概念。(2)、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程。(3)、会用降阶法解微分方程。(4)、理解二阶线性微分方程解的性质及解的结构定理。(5)、 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。(6)、 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。(7)、会用微分方程解决一些简单的应用问题。考研数学二大纲之线性代数一、行列式1、考试内容行列式的概念和基本性质 行列式按行(列)展开定理2、考试要求(1)、了解行列式的概念,掌握行列式的性质.(2)、会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵1、考试内容矩阵的概念;矩阵的线性运算;矩阵的乘法;方阵的幂;方阵乘积的行列式;矩阵的转置;逆矩阵的概念和性质;矩阵可逆的充分必要条件;伴随矩阵矩阵的初等变换;初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算。2、考试要求(1)、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.(2)、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.(3)、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.(4)、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.(5)、了解分块矩阵及其运算.三、向量1、考试内容向量的概念;向量的线性组合和线性;表示向量组的线性相关与线性无关;向量组的极大线性无关组等价向量组;向量组的秩;向量组的秩与矩阵的秩之间的关系;向量的内积线性;无关向量组的正交规范化方法2、考试要求(1)、解n维向量、向量的线性组合与线性表示的概念.(2)、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.(3)、了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.(4)、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系(5)、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组1、考试内容:线性方程组的克莱姆(Cramer)法则;齐次线性方程组有非零解的充分必要条件;非齐次线性方程组有解的充分必要条件;线性方程组解的性质和解的结构;齐次线性方程组的基础解系和通解;非齐次线性方程组的通解。2、考试要求(1)、会用克莱姆法则。(2)、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。(3)、理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法。(4)、理解非齐次线性方程组的解的结构及通解的概念。(5)、会用初等行变换求解线性方程组。五、矩阵的特征值和特征向量1、考试内容矩阵的特征值和特征向量的概念;性质相似矩阵的概念及性质;矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值;特征向量及其相似对角矩阵。2、考试要求(1)、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。(2)、理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵。(3)、理解实对称矩阵的特征值和特征向量的性质。六、二次型1、考试内容二次型及其矩阵;表示合同变换与合同矩阵二次型的秩惯性定理;二次型的标准形和规范形;用正交变换和配方法化二次型为标准形;二次型及其矩阵的正定性。2、考试要求(1)、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念。(2)、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。(3)、理解正定二次型、正定矩阵的概念,并掌握其判别法。参考资料:百度百科-考研数学二大纲

考研数一数二的线代大纲一样吗

啊海军
成心
不一样的。数一大纲考试科目有,高等数学、线性代数、概率论与数理统计。试卷内容结构高等数学56%,线性代数22%,概率论与数理统计22%。线性代数要求行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。数二大纲考试科目有,高等数学、线性代数。试卷内容结构高等数学78%、线性代数22%。线性代数要求行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量。扩展资料:考研数学要求规定:1、考研初期复习要全面夯实基础,重点弥补薄弱环节。考研数学复习具有基础性和长期性等特点,在考研初期复习阶段考研数学初期复习要排在首位。2、考研数学解答题主要考查综合运用知识的能力、逻辑推理能力、空间想象能力以及分析、解决实际问题的能力,包括计算题、证明题及应用题等,综合性较强。参考资料来源:百度百科-考研数学

考研数学二考哪些内容,比例多少

小狐仙
初音
总分150高数 约78%线代 约22%题型:填空与选择 约45% 简答(包括证明)约55%参考资料:考研大纲介绍

2020考研数学二大纲和数一大纲有什么区别?

儿歌
使目不明
其实考研数学二的考察内容和考研数学一大体上没有太大的区别,只不过在出题难度上相对于考研数学一来说,考研数学二确实要简单一点。  考研数学二的考试内容主要包括:1.函数,极限,连续;2.一元函数微分学;3.一元函数积分学;4.多元函数微积分学;5.常微分方程;6.线性代数中的矩阵和行列示。考研数学二与考研数学一相比,其主要的出题区别是在试卷内容和考试科目上。就试卷内容来说,考研数学一主要是考:线性代数、高等数学和概率与数据统计;考研数学二主要考线性代数和高等数学,而概率与数据统计是不靠的。在考试科目上的区别,在线性代数中,考研数学一多了向量空间的内容,而考研数学二则没有;在高等数学上,考研数学一的考察范围非常的广泛,但是考研数学二却没有向量代数、空间解析几何、三重积分、曲线积分、曲面积分以及所有与物理相关的应用。

全国考研数学二302考试大纲都一样吗

形魂
六合之外
同一考试科目,如果是统考的,考试大纲肯定是一样的。不同的科目考试大纲是有区别的,如数学一与数学二考试大纲是有差异的,考试的难点也不一样。

考研数学二要考哪些,能给出具体的考纲吗? 谢谢!!

好之不厌
虽践
http://www.doc88.com/p-396145818280.htmlhttp://wenku..com/view/e5b55a92dd88d0d233d46a61.html 希望对你有帮助!数学二的话,和数学一以及数学三稍有不同。只是考高数,线代,不用考概率与统计!高数就是同济版本的,线代就是清华版本的

考研数学二视频

神臂
大灾难
您好!很高兴为您解答!考研数学二复习方法一。明确大纲要求,把握复习考点中的重点,难点  要仔细研读大纲,确保牢固地掌握基本概念、基本理论、基本公式,从10年的考试告诉我们不放过任何一个考点的复习,这是考研数学复习取得成功最基本的条件。同时还要学会解读大纲中的关键词:理解和掌握的知识点要求较高,历年的考题证明必考无疑,这些知识点要作为复习的重点反复地全面的强化巩固;了解、会计算这样的知识点要求较低,可以作为复习的次重点。二。系统化知识板块,分类进行强化练习与总结  大纲作为指引,为考生的复习指明了方向,可以让我们的复习更高效。三。细化易出错和重点题型,提高解题熟练度  再对照大纲,将主要知识点过一遍,查漏补缺,发现有忘记或还不太理解的知识点要回归到教材上重新学习一遍。四。全面的研究真题,领会命题规律,准备最后的冲刺  系统研究近十年历年的真题,反复比较,将重复率最高的知识点剔除出来,强化理解相应的基础概念、定理。同时利用接近真题难度的模拟题进行综合练习,培养做题的感觉,同时进一步查漏补缺。考研数学二视频你可以关注下文都资讯网。一般都没有免费的,你可以去淘宝购买2015年的视频,不超过50元,也不要贪便宜,自己认清卖家就好……有疑问,可!

考研考数二,具体考哪些,哪些章节?

灰熊人
候诊室
高等数学考点:第一章 函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章  一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章  一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第四章 多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章  常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数考点:第一章 行列式行列式的运算计算抽象矩阵的行列式第二章  矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的证命题第三章 向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定问量能否由向量组线性表示第四章 线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章 矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题第六章  二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念拓展资料:数学二形式与结构:(一)试卷满分及考试时间1.试卷满分为150分2.考试时间为180分钟。(二)答题方式1.答题方式为闭卷2.笔试。(三)试卷内容结构1.高等数学 78%2.线性代数 22%(四)卷题型结构1.试卷题型结构为:单项选择题 8小题,每题4分,共32分2.填空题 6小题,每题4分,共24分3.解答题(包括证明题) 9小题,共94分资料链接:百度百科--考研数学二