欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

应用统计学专业考研需考哪些科目

仁义之端
处静
应用统计学考试科目:(101)思想政治理论、(201)英语一/(202)俄语/(203)日语、(303)数学三、(816)西方经济学。(注:专业课各大院校的考试科目有所不同,需以报考院校为准)。

应用统计学的学生考研可以考什么?

鲫蛆甘带
春潮急
可以考统计学、金融工程、数量经济学、计量经济学、市场营销这些学科。有三种选择,但只是建议,关键还是要看自己喜欢什么,将来有什么打算。1、继续念统计学,换专业成本最低,而且就业也不差,例如可以从事金融行业,数理统计硕士出来还可以去药厂或者一些定量的咨询公司。 2、转金融工程、数量经济学、计量经济学等一些统计学与金融学的交叉学科。将来出来从事的工作很多也会和统计学相关。例如数量化选股、统计套利等。 3、转市场营销。市场营销,特别是结合了心理学、行为学等学科的消费者行为学研究这块,用到大量的统计学模型。考研考试注意事项:1、考生进入考场,不得携带任何书籍(包括外语词典等工具书)、报纸和稿纸。只准带必需的文具。2、考生在每科考前10分钟,凭准考证进入考场,对号入座。3、除在试卷上规定填写的项目外,不得作其他任何标记,否则试卷作废。4、考生对试题内容有疑难时,不得向监考人员询问。如遇试题分发错误和字迹模糊问题,可举手询问。5、考生不准交头接耳,不准偷看、夹带、抄袭或者有意让他人抄袭答题内容,不准接传答案或者交换答卷等。

统计学研究生要考哪些科目安?

狂想曲
非乎
统计学专业考研科目:1、101思想政治理论2、201英语一3、303数学三4、807概率统计统计学专业主干课程:数学分析、几何代数、数学实验,常微分方程,复变函数,实变与泛函、概率论、数理统计,抽样调查,随机过程,多元统计,计算机应用基础,程序设计语言,数据分析及统计软件、回归分析;可靠性数学,实验设计与质量控制,计量经济学,经济预测与决策,金融数学,证券投资的统计分析,数值分析,数据结构与算法,数据库管理系统,计算机网络系统,系统分析与软件设计。扩展资料:统计学专业毕业生需具备以下几方面的能力:1、掌握数学、物理的基础知识,具有较强的分析和演算能力;2、掌握系统的力学基本理论知识,初步掌握力学的基本实验技能和实验分析方法;掌握一定的工程背景知识,初步学会建立简单力学模型的方法;3、了解相近专业的一般原理和知识;4、对该专业范围内科学技术的新发展有所了解;5、了解国家科技、产业政策、知识产权等有关政策和法规;6、掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果、撰写论文,参与学术交流的能力。统计学专业学习内容包括:资料的搜集方法、资料的处理归纳方法、资料的分析方法。教学方法为在一般性面授基础上,辅以各种类型的案例分析,以提高学生的实践能力,还有较多的实践机会,如要围绕一个课题,自己设计调查问卷,采集数据,再对数据进行处理。参考资料来源:百度百科--统计学专业

应用统计专业适合考哪些专业研究生

不知其所
疾雷破山
继续念统计学,有偏数理统计的硕士、也有偏应用统计的硕士,换专业成本最低,而且就业也不差,例如如果想从事金融行业的话,其实现在做量化投资的都会招不少统计学出身的人,而且对于硕士学的是否是金融学其实要求也不高,你完全可以考个CFA,CPA或者学一些金融统计课程了解。数理统计硕士出来还可以去药厂或者一些定量的咨询公司。2. 转金融工程、数量经济学、计量经济学等一些统计学与金融学的交叉学科。其实金融工程里用的统计学其实不是很多,数学主要以概率论和随机过程为主,但鉴于国内衍生品市场的发展现状,其实这类金融工程的课程也会涉及许多数量化分析的内容,将来出来从事的工作很多也会和统计学相关。例如数量化选股、统计套利等。3. 转市场营销、心理学等行为科学的学科。市场营销,特别是结合了心理学、行为学等学科的消费者行为学研究这块,用到大量的统计学模型,而且这个领域这些年发展的很快,这个专业的学习个人觉得会非常有趣。但我不清楚目前国内的市场营销系定量研究的水平如何4.计算机/人工智能/模式识别/机器学习/数据挖掘/商业智能,这个领域现在也很火,应用前景也很广泛,包括自动化、生物信息、金融量化交易等现在都在大量使用所谓的人工智能/机器学习的算法。很多都是计算机出身的人在做,但其实用的大量模型和算法都是统计学,特别是多元统计那块的理论。所以理论部分对于学统计出身的人来说不是问题,写代码、数据结构与算法这些可能是个难点。

请问央财的应用统计专硕的复试考些什么

搭错车
红土地
1、初试专业课是396经济类联考综合能力和432统计学。学校没有指定参考书目,查看联考和应用统计硕士教指委制定的大纲。2、不了解央财的应用统计专硕的复试具体考些什么,但学校指定的复试参考书目是:《统计学》,刘扬、毛炳寰,中国统计出版社 (2010年 第一版) ; 《从数据到结论》,吴喜之,中国统计出版社 (2010年 第一版) 。3、建议去央财的官网查看【硕士研究生专业目录】和复试参考书目等信息,或者百度搜索《中央财经大学2014年硕士研究生招生专业目录》和《中央财经大学2014年硕士研究生复试参考书目》即可了解,务必以央财官网发布的考研信息为准。你可以找央财的复试群,或者去考研网,研招网的论坛去看一下~~祝你复试成功,希望对你有帮助~望采纳~~

应用统计考研

风骨
彼圣人者
  应用统计考研一般考试科目为4门,即思想政治理论、外国语、数学三和专业课,具体的考试科目以报考单位的专业目录为准。  例如,(10002)中国人民大学/(115)统计学院/(025200)(专业学位)应用统计的初试科目为:(101)思想政治理论 (201)英语一 (303)数学三 (432)统计学 。  应用统计专业主要包括一般统计和经济统计两类专业方向,培养具有良好的数学或数学与经济学素养,掌握统计学的基本理论和方法,能熟练地运用计算机分析数据,能在企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部门从事研究和教学工作的高级专门人才。这个要看什么学校的,据我所知现在大多数高校,都考经济类联考,比如人大等,但也有少数学校,如上财,2012年还考的数三。楼主要先确定考什么学校啊。当然比如上财,13年的考研还不能确定是考那个,要等一段时间等消息出来。跟统计最相近的是数量经济学专业,还有数据挖掘、生物统计、流行病与卫生统计等(这几个开设的学校比较有限,估计楼主可能不是很感兴趣啊~)。也有人会去考经济、金融等财经类专业啊,也是个不错的选择。本回答被网友采纳

自动化考研考数学一,考哪些考点?

齐岱为锷
禁欲者
  考研数学一的考试科目包括:高等数学、线性代数、概率与统计。  一、高等数学  (一)函数极限连续  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.  2.了解函数的有界性、单调性、周期性和奇偶性.  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.  6.掌握极限的性质及四则运算法则.  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.  (二)一元函数微分学  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.  3.了解高阶导数的概念,会求简单函数的高阶导数.  4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.  5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.  6.掌握用洛必达法则求未定式极限的方法.  7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.  8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当f''(x)>0 时,f(x) 的图形是凹的;当f"(x) <0时,f(x) 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.  9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.  (三)一元函数积分学  1.理解原函数的概念,理解不定积分和定积分的概念.  2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.  3.会求有理函数、三角函数有理式和简单无理函数的积分.  4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.  5.了解反常积分的概念,会计算反常积分.  6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.  (四)向量代数和空间解析几何  1.理解空间直角坐标系,理解向量的概念及其表示.  2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.  3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.  4.掌握平面方程和直线方程及其求法.  5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.  6.会求点到直线以及点到平面的距离.  7.了解曲面方程和空间曲线方程的概念.  8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.  9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.  (五)多元函数微分学  1.理解多元函数的概念,理解二元函数的几何意义.  2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.  3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.  4.理解方向导数与梯度的概念,并掌握其计算方法.  5.掌握多元复合函数一阶、二阶偏导数的求法.  6.了解隐函数存在定理,会求多元隐函数的偏导数.  7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.  8.了解二元函数的二阶泰勒公式.  9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.  (六)多元函数积分学  1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.  2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).  3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.  4.掌握计算两类曲线积分的方法.  5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.  6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.  7.了解散度与旋度的概念,并会计算.  8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).  (七)无穷级数  1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.  2.掌握几何级数与 级数的收敛与发散的条件.  3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.  4.掌握交错级数的莱布尼茨判别法.  5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.  6.了解函数项级数的收敛域及和函数的概念.  7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.  8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.  9.了解函数展开为泰勒级数的充分必要条件.  10.掌握 , , , 及 的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.  11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.  (八)常微分方程  1.了解微分方程及其阶、解、通解、初始条件和特解等概念.  2.掌握变量可分离的微分方程及一阶线性微分方程的解法.  3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.  4.会用降阶法解下列形式的微分方程: .  5.理解线性微分方程解的性质及解的结构.  6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.  7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.  8.会解欧拉方程.  9.会用微分方程解决一些简单的应用问题.  二、线性代数  第一章:行列式  考试内容:  行列式的概念和基本性质 行列式按行(列)展开定理  考试要求:  1.了解行列式的概念,掌握行列式的性质.  2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.  第二章:矩阵  考试内容:  矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换初等矩阵矩阵的秩矩阵等价 分块矩阵及其运算  考试要求:  1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.  2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.  4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.  5.了解分块矩阵及其运算.  第三章:向量  考试内容:  向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质  考试要求:  1.理解n维向量、向量的线性组合与线性表示的概念.  2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.  3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.  4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系  5.了解n维向量空间、子空间、基底、维数、坐标等概念.  6.了解基变换和坐标变换公式,会求过渡矩阵.  7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.  8.了解规范正交基、正交矩阵的概念以及它们的性质.  第四章:线性方程组  考试内容:  线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解  考试要求  l.会用克莱姆法则.  2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.  3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.  4.理解非齐次线性方程组解的结构及通解的概念.  5.掌握用初等行变换求解线性方程组的方法.  第五章:矩阵的特征值及特征向量  考试内容:  矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵  考试要求:  1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.  2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.  3.掌握实对称矩阵的特征值和特征向量的性质.  第六章:二次型  考试内容:  二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性  考试要求:  1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.  2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.  3.理解正定二次型、正定矩阵的概念,并掌握其判别法  三、概率与统计  第一章:随机事件和概率  考试内容:  随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求:  1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.  2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.  3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.  第二章:随机变量及其分布  考试内容:  随机变量 随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布  考试要求:  1.理解随机变量的概念.理解分布函数  的概念及性质.会计算与随机变量相联系的事件的概率.  2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.  3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.  4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布  及其应用,其中参数为λ(λ>0)的指数分布的概率密度为  5.会求随机变量函数的分布.  第三章:多维随机变量及其分布  考试内容  多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度  随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布  考试要求  1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.  2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.  3.掌握二维均匀分布,了解二维正态分布  的概率密度,理解其中参数的概率意义.  4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.  第四章:随机变量的数字特征  考试内容  随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质  考试要求  1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征  2.会求随机变量函数的数学期望.  第五章:大数定律和中心极限定理  考试内容  切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理  考试要求  1.了解切比雪夫不等式.  2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .  3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .  第六章:数理统计的基本概念  考试内容  总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布  考试要求  1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:  2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.  3.了解正态总体的常用抽样分布.  第七章:参数估计  考试内容  点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计  考试要求  1.理解参数的点估计、估计量与估计值的概念.  2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.  3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.  4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.  第八章:假设检验  考试内容  显著性检验假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验  考试要求  1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.  2.掌握单个及两个正态总体的均值和方差的假设检验.

金融专硕考试科目是哪些?研究生考研有都考什么内容?

相天
鸣我
  全国硕士研究生入学统一考试分为初试和复试。  一、学术型研究生招生初试科目  学术型研究生招生初试科目一般为四个单元,即思想政治理论、外国语、业务课一和业务课二 。  教育学、心理学、历史学、西医、中医设置三个单元考试科目,即思想政治理论、外国语、业务课一。  二、专业学位研究生招生初试科目  专业学位研究生招生初试科目一般为四个单元,即思想政治理论、外国语、业务课一和业务课二 。  体育硕士、应用心理硕士、文物与博物馆硕士、药学硕士、中药学硕士、临床医学硕士、口腔医学硕士、公共卫生硕士、护理硕士初试科目设三个单元,即思想政治理论、外国语、专业基础课。  会计硕士、图书情报硕士、工商管理硕士、公共管理硕士、旅游管理硕士、工程管理硕士和审计硕士初试科目设两个单元,即外国语、管理类联考综合能力。  金融硕士、应用统计硕士、税务硕士、国际商务硕士、保险硕士、资产评估硕士初试增设经济类综合能力科目,供试点学校选考。  三、硕士研究生招生全国统考、联考科目  全国统考科目为思想政治理论、英语一、英语二、俄语、日语、数学一、数学二、数学三、教育学专业基础综合、心理学专业基础综合、历史学基础、西医综合、中医综合。  全国联考科目为数学(农)、化学(农)、植物生理学与生物化学、动物生理学与生物化学、计算机学科专业基础综合、管理类联考综合能力、法硕联考专业基础(非法学)、法硕联考综合(非法学)、法硕联考专业基础(法学)、法硕联考综合(法学)(其中的教育学专业基础综合、教育学专业基础综合、心理学专业基础综合、历史学基础、数学(农)、化学(农)、植物生理学与生物化学、动物生理学与生物化学、计算机学科专业基础综合试题由招生单位自主选择使用)。  全国统考和全国联考科目的命题工作由教育部考试中心统一组织;全国统考科目的考试大纲由教育部考试中心统一编制,全国联考科目的考试大纲由教育部考试中心或教育部指定相关机构组织编制。  备注:自2013年起,统考的八个专业中的教育学、心理学、计算机、农学和历史学,部分院校不参加专业课统考,所以虽为统考科目,但院校可以不采用统考试卷,自行出卷子。2014年不参加统考的院校有增加的趋势,这点要特别注意。  四、复试  复试由各院校自行安排。一般占30-50%比重,考查方式为英语能力测试(口语、听力),专业课、综合面试。专科生复试要再加试两门专业课,具体加考的专业课要看你报考的学校规定。

研究生考试中数学一与数学二有什么具体的区别?

求通久矣
泉水
数学一: 高等数学约56 % 线性代数约 22 % 概率论与数理统计约22 %  数学二: 高等数学约78 % 线性代数约22 %数学一或二具体划分:轻工、纺织、食品、农林考数学二;化学工程、材料工程、环境工程、石油天然气工程、地质矿业工程可根据本专业对数学的要求选择选择数学一或二;其他各类专业(包括授工学学位的管理科学与工程一级学科)必须考数学一。拓展资料:考研科目又有那些呢?必考科目:专业课、英语、政治。具体为:考研初试共五科,满分为500分。各个专业考试科目不同,一般为政治+英语+2门专业课(或者数学+1门专业课),不是所有专业都考数学的。理科及管理类一般都考,具体考试科目请参考自己拟报考招生院校历年招生专业目录。全国统考公共课有政治(满分100分)、英语(满分100分)、数学(一、二、三)(满分150分)。全国统考专业课有心理学、教育学、历史学、农学、计算机科学与技术(满分均为150分)。除此之外,其它专业课均为招生院校自主命题、阅卷。