欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

研究生考试一定要考数学吗

宋钘
乃亚
会计考研是分为会计学硕和会计专硕,这两种统称为会计考研,但是所要考的数学内容是不同的。 会计专硕中所考的数学是在联考中的,也就是咱们所说的199管理类联考。 199管理类联考中所考的数学属于基础数学,所考内容是高中所学的数学知识,这个很简单。 会计学硕是咱们经常说的会计学,会计学考数学三。 考研数学三是考高等数学、线性代数、概率论与数理统计这三部分内容。 数学三满分150分,从试卷结构上来看,设有三种题型:选择题(8道共32分)、填空题(6道共24分)、解答题(9道共94分)。通过分析近些年考试大纲中给出的考点,数三是要求考173个考点,基础知识会占总分的70%,也就是150*70%=105分。同时也会有侧重点,数三要求掌握经济应用问题。 急速通关计划 ACCA全球私播课 大学生雇主直通车计划 周末面授班 寒暑假冲刺班 其他课程

考研是不是一定要考数学?

君子道
莫里斯
考研不考数学的专业:汉语言文学(文学 语言学 文字学 ) 历史 哲学 新闻学 传播学 播音主持 采访编辑 管理类方面(企业管理 金融管理 工商管理 要考数学;行政管理 看情况而定) 图书管理学 劳动与社会保障 工业设计 服装设计 装潢设计(看学校而定) 园林设计(主要看农业学校而定) 艺术类(声乐、美术、体育) 医学类(看学校而定) 心理学(由学校而定 在应用心理学中 需要考统计学) 社会学 法律 生物科学(由学校而定) 英语(科技英语有的学校要考)有的专业是不需要考数学的!考研不考数学的专业: 汉语言文学(文学 语言学 文字学 ) 历史 哲学 新闻学 传播学 播音主持 采访编辑 管理类方面(企业管理 金融管理 工商管理 要考数学;行政管理 看情况而定) 图书管理学 劳动与社会保障 工业设计 服装设计 装潢设计(看学校而定) 园林设计(主要看农业学校而定) 艺术类(声乐、美术、体育) 医学类(看学校而定) 心理学(由学校而定 在应用心理学中 需要考统计学) 社会学 法律 生物科学(由学校而定) 英语(科技英语有的学校要考)

考研究生必须考数学么

羔羊
老来难
不是啊 ,文科基本上是不考的。具体你得参考所报学校的招生简章。必考。高等数学。不同类的难度不同。别太担心,既然要考研,数学还是比较基础的。即使文史。

考研考数学和不考数学有什么区别吗?

相棒
天其运乎
考研考数学和不考数学区别很大。考数学完全靠学科实力,而且还是无法短时间内能提高的,正如张雪松的名言,数学不会是真不会,不会只能写个解,而且判卷老师还不给分。

考研一定要考数学吗?有知道的吗

振振有辞
滑雪课
第二批是每年1月份考的,这个是全日制研究生。考研也就是个考试而已,和之前的考试一样,好好复习。不一定,看你是考什么专业的。比如生物类就不考数学,农学类也不需要考数学。必考科目是政治和英语专业课科目有的考一门大综合,有的考两门。考两门这类 ①两门全是全国统考,如农学考化学和生理生化。②有的是一门全国统考(数学),一门学校自己命题。③还有两门都是学校自己命题的(这种就可以避开数学了)。

研究生入学考试中哪些专业不要考数学

其德天杀
是国马也
以下专业在考研中不用考数学,以及需要考试的科目如下:教育学、历史学、医学门类初试设置三个单元考试科目,即思想政治理论、外国语、专业基础综合,满分分别为100分、100分、300分。体育、应用心理、文物与博物馆、药学、中药学、临床医学、口腔医学、中医、公共卫生、护理等专业学位硕士初试设置三个单元考试科目,即思想政治理论、外国语、专业基础综合,满分分别为100分、100分、300分。会计、图书情报、工商管理、公共管理、旅游管理、工程管理和审计等专业学位硕士初试设置两个单元考试科目,即外国语、管理类联考综合能力,满分分别为100分、200分。扩展资料:研究生考试需要考数学的专业:根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三,招生专业须使用的试卷种类规定如下:一、须使用数学一的招生专业:1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科专业。2、授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业:工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科专业。三、须选用数学一或数学二的招生专业(由招生单位自定):工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。四、须使用数学三的招生专业:1、经济学门类的各一级学科。2、管理学门类中的工商管理、农林经济管理一级学科。3、授管理学学位的管理科学与工程一级学科。参考资料:研招网-教育部关于全国硕士研究生招生工作管理规定的通知

考研数学四是什么级别啊要考些什么

太空梦
鬼也笑
2006年数学四考研大纲希望对考数学四的人有点用2006年全国硕士研究生入学考试 数学四考试大纲 数学四考试科目微积分、线性代数、概率论微 积 分一、 函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、隐函数 分段函数 基本初等函数的性质及其图形初等函数 简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1、 理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。2、 了解函数的有界性、单调性、周期性和奇偶性。3、 理解复合函数及分段函数的概念,了解隐函数及反函数的概念。4、 掌握基本初等函数的性质及其图形,理解初等函数的概念5、 了解数列极限和函数极限(包括坐极限和右极限)的概念。6、 理解无穷小的概念和基本性质,掌握无穷小的比较方法,了解无穷大的概念及其无穷小的关系。7、 了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,会应用两个重要极限。8、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、 一元函数微分学考试内容导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 一阶微分形式的不变性罗尔定理和拉格郎日中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值考试要求1、 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;会求分段函数的导数,会求反函数与隐函数的导数3、 了解高阶导数的概念,会求简单函数的高阶导数4、 了解微分的概念,导数与微分之间的关系,以及一阶微分的形式的不变性,会求函数的微分。5、 理解罗尔(Rolle)定理和拉格郎日中值定理、掌握这两个定理的简单应用。6、 会用洛必达法则求极限。7、 掌握函数单调性的判别方法及其应用,掌握函数极值、最大值和最小值的求法,会求解较简单的应用题。8、 会用导数判断函数图形的凹凸性,会求函数图形的拐点和斜渐近线。9、 会作简单函数的图形。三、 一元函数的积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 广义积分 定积分的应用。考试要求1、 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。2、 了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式,以及定积分的换元积分法和分部积分法。3、 会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题。4、 了解广义积分的概念,会计算广义积分四、 多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算。考试要求1、 了解多元函数的概念,了解二元函数的几何意义。2、 了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质。 3、 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数 会求全微分,会用隐函数的求导法则。4、 了解多元函数的极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。5、 了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法,了解无界区域上的较简单的广义二重积分并会计算 五、 常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程一阶线性微分方程考试要求1、 了解微分方程及其解、阶、通解、初始条件和特解等概念。2、 掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。线 性 代 数一、 行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1、 了解行列式的概念,掌握行列式的性质。 2、 会应用行列式的性质和行列式按行(列)展开定理计算行列式。二、 矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求1、 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵,反对称矩阵及正交矩阵等的定义和性质。 2、 掌握矩阵的线性运算、乘法、以及它们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质。 3、 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。4、 了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。5、 了解分块矩阵的概念,掌握分块矩阵的运算法则。三、 向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法。考试要求1、 了解向量的概念,掌握向量的加法和数乘运算法则。2、 理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。3、 理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。4、 了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。5、 了解内积的概念、掌握线性无关向量组正交规范化的施密特(Schmidt)方法。四、 线性方程组考试内容线性方程组的克莱母(又译:克拉默)(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解。考试要求1、 会用克莱母法则解线性方程组。2、 掌握非齐次线性方程组有解和无解的判定方法。3、 理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的方法。 4、理解非齐次线性方程组的结构及通解的概念。 5、掌握初等行变换求解线性方程组的方法。五、 矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵。考试要求1、 理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。2、 理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。3、 掌握实对称矩阵的特征值和特征向量的性质.概 率 论一、 随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1. 了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算。2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握计算概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式等。 3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。二、 随机变量及其概率分布考试内容随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布考试要求1. 理解随机变量及其概率分布的概念;理解分布函数F(x)=P{X≤x} (-∞<x<+∞)的概念及性质;会计算与随机变量相联系的事件的概率。2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2) 、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为5.会求随机变量函数的分布。三、 随机变量的联合概率分布考试内容随机变量的联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布。考试要求1、 理解随机变量的联合分布函数的概念和基本性质。2、 理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握两个随机变量的边缘分布和条件分布。3、 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系。4、 掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。5、 会根据两个随机变量的联合概率分布求其函数的分布;会根据多个独立随机变量的概率分布求其函数的分布。四、 随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫不等式 矩、协方差 相关系数及其性质。考试要求 1、 理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数学特征的基本性质,并掌握常用分布的数字特征。 2、 会求随机变量函数的数学期望。3、了解切比雪夫不等式。五、 中心极限定理考试内容隶莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理。考试要求1、 了解隶莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。试 卷 结 构(一) 题分及考试时间试卷满分为150分,考试时间为180分钟。(二) 内容比例高等数学 约50%线性代数 约25%概率论 约25%(三) 题型比例填空题与选择题 约40%解答题(包括证明)约60%参考资料:http://bbs.kaoyan.com/viewthread.php?tid=1165052数学四要考: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、常微分方程);2、线性代数;3、概率论。 其他的:数学一: 1、高等数学(函数、极限、连续、一元函数的微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);2、线性代数;3、概率论与数理统计。 数学二: 1、高等数学(函数、极限、连续、一元函数微积分学、微分方程);2、线性代数。 数学三: 1、高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);2、线性代数;3、概率论与数理统计。

所有工科 理科考研都要考数学吗? 有没有不考数学的专业方向?

白豚
何谓少乎
应该是没有不考数学的研究生。但是可以选考比较简单的数学三或者二。

考研必须要考高数嘛。?

大东方
考研只有部分专业不考数学,英语和政治是公共课,必考考研不考数学的专业汇总一、不考数学的专业法律硕士、工商管理硕士、汉语言文学、历史、哲学、新闻学、传播学、播音主持、采访编辑、艺术类、图书管理学、劳动与社会保障、法学、社会学、服装设计、工业设计(艺术类)。法律硕士可归为既是精神满足型又日物质实现型的专业,可以为社会弱势群体代言,又可以得到丰厚的物质回报,而且广阔的就业前景正在吸引越来越多的考生报考,竞争是非常激烈的。工商管理硕士是市场经济的产物,培养的是高质量、处于领导地位的职业工商管理人才,使他们掌握生产、财务、金融、营销、经济法规、国际商务等多学科知识和管理技能,有战略规划的眼光和敏锐洞察力,受到了考生的青睐,但昂贵的学费也是让很多考生放弃的原因。二、视学校而定的专业装潢设计、医学类、生物科学、行政管理、心理学(在应用心理学中,需要考统计学)、英语(科技英语有的学校要考)、园林设计(主要看农业学校而定)。近年来心理学专业的考生无疑是越来越多,竞争也越来越激烈,心理学专业初试涵盖了普通心理学、发展与教育心理学、实验心理学、心理统计与测量等学科。英语专业是很多人想要选择的专业,但考研难度大,关键还有对第二外语的要求,这就让很多自认为英语好的考生望而却步,在这里提醒考研想要报考英语专业的考生在复习的初期就要重视第二外语的学习,语言类的学习是一个长期准备的过程。通过对不考数学的专业的介绍,相信很多数学基础不好的考研学子都在想自己报考的专业为什么要考数学呢,实际上这些都是与所报考专业的需求联系的,未来的学习需要数学,那考研初试就一定会考查的。数学的学习需要长期的准备付出才能显示出复习效果的,所以考研的学子一定要尽早投入复习。