欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研多长时间

仁政
老炮儿
1、大三上学copy期至下学期3月:决定是否考研;考哪所学校;  2、大三下学期~暑期:基础复习、暑假复习和考研班听课,并关注大纲、招简  3、大四上学期9~10月:考研网上预报名和网上报名,提高复习  4、大四上学期11月:冲刺复习、现场确认  5、大四上学期12月:冲刺复习、打印准考证、考试  6、大四上学期2月:考试成绩公布  7、大四下学期3月:复试分数线公布  8、大四上学期4月:研究生复试、调剂  9、大四下学期5月:调档、政审  10、大四下学期6月:本科毕业,获得研究生录取通知书。

考研数学真题从什么时候开始做合适?

万世不竭
穿墙人
真题是每一位考生在复习时必须要经历的一段过程,这段过程也是每一位考生提分的一个重点内容,但是什么时候开始做真题?如何做真题这些你都了解么?下面跟着哈尔滨考研培训黑龙江中公考研小编一起来了解一下吧。首先,大家必须要明白,我们做真题的目的在于什么。简单的说,真题可以为我们的复习指明一条路,真题可以明确告诉我们考试究竟要考什么,考试的知识点是什么,考试的难度达到什么程度。然而,对很多同学来说,这一点是很难从真题中得到的,原因就在于学生的数学程度和数学素养有限,对他们而言,很难去读懂每一道真题后面,所蕴含的的真意是什么,所以说这一点往往需要老师帮助大家。在说完了我们做真题的目的之外,下面我就给大家介绍一下,我们究竟该如何去做真题。我们究竟该做多少年的真题?在这里,建议大家至少要做近20年的真题,这是因为考研数学和考研英语、考研政治不一样,英语和政治的时代感比较强,时效性也比较强,比如说,大家在做10年前的英语和政治真题和现在真题是完全不一样的感觉。然而,数学恰恰与此相反,经过近28年的萃取,考研数学早已发展成熟,不会在知识点和深度上面有太多的变化。这个时候,有一些学生会问,考过的真题还会再考吗?给大家举一个例子,在2012年考过一道和1994年完全一样的题目,可以告诉大家,纵然不会考原题,至少也会在做题的思路和做题的思想上是完全一样的,所以说,建议大家至少要做近20年的考研真题。我们需要在什么时候做真题?建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。应该怎么样去做真题?我给大家的建议是,在提高阶段,我们首先将真题按照题型进行分类,我们从题型的类别去做真题。这样做的目的有两个,第一,我们可以知道我们目前的程度和考试差距究竟有多大;第二,在我们分开类别去做真题的时候,我们也可以知道,自己究竟在那一块的知识比较薄弱,方便我们进行有针对性的查缺补漏做专题复习。其次,在我们的第四个阶段,也就是冲刺模考阶段,也是要以真题为根本出发点,需要大家继续做真题。但是这个时候,我们不用再将真题进行分类,而是直接进行整套真题的进行做。这个时候,可能会有同学这样说,我在提高阶段已经做过真题,为什么现在还有做真题?大家必须明白,你做分类的真题和整套真题是两种概念,我们在做分类的真题的时候,我们不需要太多的思维跨度,然而,当我们做整套真题的时候,我们是需要思维跨度,这一点,在考试过程中,对大家的要求也是比较大的。所以,在冲刺模考阶段,我们还是需要做真题。当然,也需要有一定的模拟题进行穿插起来做。毕竟,大家在提高阶段已经将真题做过一遍。这里,给大家的建议是做两套真题,做一套模拟题。

考研英语政治一般是在一天中的几点考

未必贱也
傅说得之
上午政治(8:30-11:30)下午英语(2:00-5:00)研究生考试时间:每科3个小时第一天上午政治(8:30-11:30)下午英语(2:00-5:00)第二天上午数学或专业基础课(8:30-11:30)下午专业课(2:00-5:00)全国硕士研究生统一招生考试(Unified National Graate Entrance Examination),简称“考研”。是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(部分专业通过全国联考的方式进行命题)。硕士研究生招生方式分为全日制和非全日制两种。培养模式分为学术型硕士和专业型硕士研究生两种。扩展资料:考研政治考试的考查范围主要包括:马克思主义基本原理、毛泽东思想和中国特色社会主义理论体系概论、中国近现代史纲要、思想道德修养与法律基础、形势与政策以及当代世界经济与政治。考试满分100分,考试时间为180分钟。答题方式为闭卷,笔试。从2010年开始,全国硕士研究生入学考试的英语试卷分为了英语(一)和英语(二)。英语(一)即原研究生入学统考“英语”,所有学术型硕士研究生(十三大门类,110个一级学科)和部分专业型硕士(法律硕士、临床医学硕士、口腔医学硕士、建筑学硕士、护理硕士、汉语国际教育硕士、公共卫生硕士等)必考英语(一)。英语(二)主要是为高等院校和科研院所招收不考英语(一)的专业学位硕士研究生而设置的具有选拔性质的统考科目。参考资料:百度百科-全国硕士研究生统一招生考试

研究生考试中数学4是指什么?

铃仙
数学一是一般的理工科要考的,如计算机/材料等理工专业 数学二是对数学要求略微低一点的专业要考的,但他与数学一基本相当。如纺织专业 数学三是偏向于经济类别的考生,如经济管理 偏向概率 数学四是其它对数学要求相对低的学科。 2006年全国硕士研究生入学考试 数学四考试大纲 数学四 考试科目 微积分、线性代数、概率论 微 积 分 一、 函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、隐函数 分段函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1、 理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。 2、 了解函数的有界性、单调性、周期性和奇偶性。 3、 理解复合函数及分段函数的概念,了解隐函数及反函数的概念。 4、 掌握基本初等函数的性质及其图形,理解初等函数的概念 5、 了解数列极限和函数极限(包括坐极限和右极限)的概念。 6、 理解无穷小的概念和基本性质,掌握无穷小的比较方法,了解无穷大的概念及其无穷小的关系。 7、 了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,会应用两个重要极限。 8、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。 二、 一元函数微分学 考试内容 导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 一阶微分形式的不变性 罗尔定理和拉格郎日中值定理及其应用 洛必达(L’Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值和最小值 考试要求 1、 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。 2、 掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数”。 3、 了解高阶导数的概念,会求简单函数的高阶导数 4、 了解微分的概念,导数与微分之间的关系,以及一阶微分的形式的不变性,会求函数的微分。 5、 理解罗尔(Rolle)定理和拉格郎日中值定理、掌握这两个定理的简单应用。 6、 会用洛必达法则求极限。 7、 掌握函数单调性的判别方法及其应用,掌握函数极值、最大值和最小值的求法,会求解较简单的应用题。 8、 会用导数判断函数图形的凹凸性,会求函数图形的拐点和斜渐近线。 9、会作简单函数的图形。 三、 一元函数的积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 广义积分 定积分的应用。 考试要求 1、 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。 2、 了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式,以及定积分的换元积分法和分部积分法。 3、 会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题。 4、 了解广义积分的概念,会计算广义积分 四、 多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算。 考试要求 1、 了解多元函数的概念,了解二元函数的几何意义。 2、 了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质。 3、 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数 会求全微分,会用隐函数的求导法则。 4、 了解多元函数的极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5、 了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法,了解无界区域上的较简单的广义二重积分并会计算” 五、 常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程一阶线性微分方程 考试要求 1、 了解微分方程及其解、阶、通解、初始条件和特解等概念。 2、 掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。 线 性 代 数 一、 行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1、 了解行列式的概念,掌握行列式的性质。 2、 会应用行列式的性质和行列式按行(列)展开定理计算行列式。 二、 矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求 1、 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵,反对称矩阵及正交矩阵等的定义和性质。 2、 掌握矩阵的线性运算、乘法、以及它们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质。 3、 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。 4、 了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。 5、 了解分块矩阵的概念,掌握分块矩阵的运算法则。 三、 向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法。 考试要求 1、 了解向量的概念,掌握向量的加法和数乘运算法则。 2、 理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。 3、 理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。 4、 了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。 5、 了解内积的概念、掌握线性无关向量组正交规范化的施密特(Schmidt)方法。 四、 线性方程组 考试内容 线性方程组的克莱母(又译:克拉默)(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解。 考试要求 1、 会用克莱母法则解线性方程组。 2、 掌握非齐次线性方程组有解和无解的判定方法。 3、 理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的方法。 4、理解非齐次线性方程组的结构及通解的概念。 5、掌握初等行变换求解线性方程组的方法。 五、 矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵。 考试要求 1、 理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。 2、 理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。 3、 掌握实对称矩阵的特征值和特征向量的性质。 概 率 论 一、 随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1. 了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算。 2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握计算概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式等。 3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。 二、 随机变量及其概率分布 考试内容 随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布 考试要求 1. 理解随机变量及其概率分布的概念;理解分布函数 F(x)=P{X≤x} (-∞<x<+∞) 的概念及性质;会计算与随机变量相联系的事件的概率。 2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。 3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。 4、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2) 、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为 5.会求随机变量函数的分布。 三、 随机变量的联合概率分布 考试内容 随机变量的联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布。 考试要求 1、 理解随机变量的联合分布函数的概念和基本性质。 2、 理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握两个随机变量的边缘分布和条件分布。 3、 理解随机变量的独立性和不相关性的概念,掌握随机变量的独立条件;理解随机变量的不相关性与独立性的关系。 4、 掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。 5、 会根据两个随机变量的联合概率分布求其函数的分布;会根据多个独立随机变量的概率分布求其函数的分布。 四、 随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫不等式 矩、协方差 相关系数及其性质。 考试要求 1、 理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数学特征的基本性质,并掌握常用分布的数字特征。 2、 会求随机变量函数的数学期望。 3、了解切比雪夫不等式。 五、 中心极限定理 考试内容 隶莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理。 考试要求 1、 了解隶莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。 试 卷 结 构 (一) 题分及考试时间 试卷满分为150分,考试时间为180分钟。 (二) 内容比例 高等数学 约50% 线性代数 约25% 概率论 约25% (三) 题型比例 填空题与选择题 约40% 解答题(包括证明)约60%数一数二数来三数四每个包括源的范围不同数学一包括:高数,线性代数,概率论与数理统计 数学二包括:高数和线性代数 数学三包括:微积分,线性代数,概率论与数理统计 数学四包括:微积分,线性代数和概率论 数一数二是理工类的,数三数四是经济类的

考研数学一包括哪几门课

不达
张良
数一考试科目:高等数学、线性代数、概率论与数理统计。须使用数学一的招生专回业1、工学门类答中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2、授工学学位的管理科学与工程一级学科。扩展资料:形式结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学  56%线性代数  22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分参考资料来源:百度百科-考研数学

考研数学三几点开始考?考多久?

绿茶妹
神农隐几
考试时间以北京时间为准,上午8:30-11:30,都一样的吧,三个小时。上午考

研究生考试各科时间怎么安排

当我昏乎
松浦
以2014年为例:2014年全国硕士学位研究生招生考试初试于2014年1月4日-6日举行。  内一、1月4日  1.考试时间:容8:30-11:30  考试科目:思想政治理论、管理类联考综合能力  2.考试时间:14:00-17:00  考试科目:英语(一)、英语(二)、日语、俄语  二、1月5日  1.考试时间:8:30-11:30  考试科目:数学一、数学二、数学三、中医综合、西医综合、教育学专业基础综合、心理学专业基础综合、历史学基础、法律硕士(非法学)专业学位联考专业基础课、法律硕士(法学)专业学位联考专业基础课、农学门类联考数学、农学门类联考化学。  2.考试时间:14:00-17:00  考试科目:法律硕士(非法学)专业学位联考综合课、法律硕士(法学)专业学位联考综合课、农学门类联考植物生理学与生物化学、农学门类联考动物生理学与生物化学、计算机科学与技术学科联考计算机学科专业基础综合。  1月6日 考试时间超过3小时的考试科目  每科考试时间一般为3小时;建筑设计等特殊科目考试时间最长不超过6小时。

考研时间,具体各科的时间

绊脚石
欢喜城
研究生考试时间:每科3个小时第一天:上午政治(8:30-11:30)下午英语(2:00-5:00)第二天:上午数学或专业基础课(8:30-11:30)下午专业课(2:00-5:00)拓展资料:一、全国硕士研究生统一招生考试全国硕士研究生统一招生考试(Unified National Graate Entrance Examination),简称“考研”。是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(部分专业通过全国联考的方式进行命题)。硕士研究生招生方式分为全日制和非全日制两种。培养模式分为学术型硕士和专业型硕士研究生两种。选拔要求因层次、地域、学科、专业的不同而有所区别。考研国家线划定分为A、B类,其中一区实行A类线,二区实行B类线。一区包括:北京、天津、河北、山西、辽宁、吉林、黑龙江、上海、江苏、浙江、安徽、福建、江西、山东、河南、湖北、湖南、广东、重庆、四川、陕西。二区包括:内蒙古、广西、海南、贵州、云南、西藏、甘肃、青海、宁夏、新疆。二、报考条件(一)报名参加硕士研究生全国统一入学考试的人员,须符合下列条件: (一)中华人民共和国公民。(二)拥护中国共产党的领导,品德良好,遵纪守法。(三)身体健康状况符合国家和招生单位规定的体检要求。(四)考生学业水平必须符合下列条件之一:1.国家承认学历的应届本科毕业生(含普通高校、成人高校、普通高校举办的成人高等学历教育应届本科毕业生)及自学考试和网络教育届时可毕业本科生,录取当年9月1日前须取得国家承认的本科毕业证书)。2.具有国家承认的大学本科毕业学历的人员,要求报名时通过学信网学历检验,没通过的可向有关教育部门申请学历认证。3.获得国家承认的高职高专毕业学历后满2年(从毕业后到录取当年9月1日,下同)或2年以上,达到与大学本科毕业生同等学力,且符合招生单位根据本单位的培养目标对考生提出的具体业务要求的人员。4.国家承认学历的本科结业生,按本科毕业生同等学历身份报考。5.已获硕士、博士学位的人员。资料链接:百度百科--全国硕士研究生统一招生考试

研究生考试时间安排表?

孔舞者
东西东
时间:2011年1月8日、9日全国硕士研究生入学考试——初试 内容:初试科目分为政专治理论、属外国语、统考数学和业务课,考试时间以北京时间为准,均为3小时。 1月9日上午8:30-11:30:政治理论(满分为100分); 1月9日下午14:00-17:00:外国语(满分为100分); 1月10日上午8:30-11:30:统考数学或一门业务课(满分各为150分)1月10日下午14:00-17:00:业务课(满分为150分)