欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学二历年真题怎么这么简单???

凡事亦然
时其饥饱
李永乐的400题就是很难的,它里面每道题都涉及了N个方面,拐了N个弯,主要是锻炼你的综合知识的能力,做400题时,你的思维水平已经在潜移默化中得到提高了,而真题一般都只有一个弯最多两个,所以你做起真题来就简单很多。我是去年考的,当时做400题的时候大题我几乎一个都做不出来,150分的题大概能作出60分来,差点打击的都不想考了,后来考试前,拿了一套真题做了一下,发现简单好多,顿时又有了信心,最后考研成绩还行,110多,我已经很知足了,呵呵今年的题目很简单,但是计算量很大。因为我平时很少正儿八经的去做过套题,所以速度没有提上来,而且卡在第二个线性代数的题目无法自拔。以至于后面的概率论都没有时间做了。悲催。希望要考数学的学弟学妹们一定要好好做套题,真题。今年的选择题和就有雷同的。

历年考研数学二真题及答案哪里有?

玫瑰园
归则下之
你随便报个培训班啥的,给你全套真题和答案。考研的真题不难找,你可以多加加考研群一起交流,找真题的同时你也能及时得到一手资讯。

2009年考研数学二试题及答案解析

大盛魁
周緤
去百度文库,查看完整内容>内容来自用户:羽翼10292009年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数为123无穷多个【答案】【解析】由于,则当取任何整数时,均无意义.故的间断点有无穷多个,但可去间断点为极限存在的点,故应是的解.故可去间断点为3个,即.(2)当时,与是等价无穷小,则【答案】【解析】,故排除.另外,存在,蕴含了,故排除.所以本题选.(3)设函数的全微分为,则点不是的连续点不是的极值点是的极大值点是的极小值点【答案】【解析】因可得.,又在处,,,故为函数的一个极小值点.(4)设函数连续,则【答案】【解析】的积分区域为两部分:,,将其写成一块,故二重积分可以表示为,故答案为.(5)若不变号,且曲线在点上的曲率圆为,则函数在区间内有极值点,无零点无极值点,有零点有极值点,有零点无极值点,无零点【答案】【解析】由题意可知,是一个凸函数,即,且在点处的曲率,而,由此可得,.在上,,即单调减少,没有极值点.对于,(拉格朗日中值定理)而,由零点定理知,在上,有零点.故应选.(6)设函数在区间上的图形为:【解析】(Ⅱ)若二次型

2018年考研数学二试题及答案解析

红跑道
贵妇人
去百度文库,查看完整内容>内容来自用户:杨晓霞大本营2018年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)若,则()【答案】B(2)下列函数中,在处不可导是()【答案】D(3)设函数,,若在上连续,则()【答案】D(4)设函数在[0,1]上二阶可导,且,则(A)当时,(B)当时,(C)当时,(D)当时,【答案】D(5)设,,,则的大小关系为(A)(B)(C)(D)【答案】C(6)(A)(B)(C)(D)【答案】C(7)下列矩阵中,与矩阵相似的为【答案】A(8)设为n阶矩阵,记为矩阵的秩,表示分块矩阵,则(A)(B)(C)(D)【答案】A二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)_______(10)曲线在其拐点处的切线方程是______(11)_______(12)曲线在对应点的曲率为(13)设函数由方程确定,则(14)设为3阶矩阵,为线性无关的向量组,若,则的实特征值为【答案】2三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求不定积分(16)(本题满分(

考研数学二有哪些常考题及基本考点汇总

刘立武
李籲
(一)考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理、洛必达法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值及最小值、弧微分、曲率的概念、曲率圆与曲率半径。(二)常考题型1.对导数定义的考查;2.导数和微分的计算(包括高阶导数);3.切线与法线的计算;4.对函数单调性的考查;5.求函数极值与拐点、渐近线的问题;6.对函数以及其导数函数相关性质的考查

求 考研 数学二,李永乐复习全书和历年真题的pdf版,2015或2016版都行,谢谢了。

则忠
杂篇
Nxo基础李永乐+强化张宇+冲刺李林。完美。平常计算量要重视!!!作者去年算错三道大题答案尤其线代全算错了,最后只考了130多。虽然分很低,但经验还是可以的。需要的东西放下面了,你看下面吧。

研究生考试中数学一与数学二有什么具体的区别?

入静
数学一: 高等数学约56 % 线性代数约 22 % 概率论与数理统计约22 %  数学二: 高等数学约78 % 线性代数约22 %数学一或二具体划分:轻工、纺织、食品、农林考数学二;化学工程、材料工程、环境工程、石油天然气工程、地质矿业工程可根据本专业对数学的要求选择选择数学一或二;其他各类专业(包括授工学学位的管理科学与工程一级学科)必须考数学一。拓展资料:考研科目又有那些呢?必考科目:专业课、英语、政治。具体为:考研初试共五科,满分为500分。各个专业考试科目不同,一般为政治+英语+2门专业课(或者数学+1门专业课),不是所有专业都考数学的。理科及管理类一般都考,具体考试科目请参考自己拟报考招生院校历年招生专业目录。全国统考公共课有政治(满分100分)、英语(满分100分)、数学(一、二、三)(满分150分)。全国统考专业课有心理学、教育学、历史学、农学、计算机科学与技术(满分均为150分)。除此之外,其它专业课均为招生院校自主命题、阅卷。

考研数学一真题答案,历年的

明日见客
天子之剑
去百度文库,查看完整内容>内容来自用户:度米文库历年考研数学真题及答案【篇一:历年考研数学一真题及答案(1987-2014)】ss=txt>(经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x=_____________时,函数y?x?2x取得极小值.(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.1?x(3)与两直线y??1?tz?2?t及x?1y?1?2z?11?1都平行且过原点的平面方程为_____________.(4)设l为取正向的圆周x2?y2?9,则曲线积分??l(2xy?2y)dx?(x2?4x)dy= _____________.(5)已知三维向量空间的基底为坐标是_____________.二、(本题满分8分)求正的常数a与b,使等式lim1x2x?0bx?sinx?0?1成立.三、(本题满分7分)(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求?u?x,?v?x. (2)设矩阵a和b满足关系式ab=a?2b,其中??301?a??110?,求矩阵b.?4??01??四、(本题满分8分)求微分方程y????6y???(9?a2)y??1的通解,其中常数a?0.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设limf(x)?f(a)x?a(x?a)2??1,则在x?a处(a)f(x)的导数存在,且f?(a)?0 (b)f(x)取得极

历年数学3考研真题

虽有大知
大阴解之
2014考研数学大纲于2013年9月13日正式出炉,数学一、数学二、数学三高等数学考试内容和考试要求包含标点符号在内均没有任何的变化.有了考试大纲,就有了我们复习的依据,通过对历年考研命题规律的分析,我们得出与中值定理有关的证明题是考研数学的重点且是难点,每年必考有关中值定理的一道证明题10分.所以大家一定要引起重视,对于解这类题目,首先要确定证明的结论,然后联想与之相关的定理、结论和方法以及所需要的条件,再看题设中是否给出条件,若都没有直接给出,考虑如何由题设条件推出这些所需的条件,最后证明.其中,当要证明存在某些点使得它们的函数值或者高阶导数满足某考研辅导班些等式关系或者其他特性时,用中值定理所求的点常常是区间内的点.下面我就有关中值等式的证明总结几种方法,并且通过例题加强对此类问题方法的理解和把握。一、有关闭区间上连续函数等式的证明主要有以下几种方法:(1)直接法.利用最值定理、介值定理或零点定理直接证明,适用于证明存在 ,使得 .(2)间接法.构造辅助函数 ,然后验证 满足中值定理的条件,最后由相应的中值定理得出命题的结论.二、证明存在一点 使得关于 , , , 或 , , ,…, 的等式成立.常用证法:(1)对于这类等式的证明问题,可以通过移项使等式一端为0,转化为证明存在一点 使得 的问题.(2)利用拉格朗日中值定理直接进行证明.现举例题如下例题1:设 在 上连续,在(0,1)内可导,且 .试证 (I) 存在 ,使 .(II) 对任意实数 ,存在 ,使 .分析 本题的关键是构造辅助函数.对于关系式 多是采考研英语用罗尔中值定理,将含右端项项左移, 得 ,再将左端(或乘以非零函数)尽量化成某函数的导数,这个函数就是所需的辅助函数.设此时的函数为 ,则 .故 ,可令 ,则 .证明: (I) 令 . , ,由零点定理知 ,使 ,即 .(II) 令 ,则 , ,由罗尔定理知 ,使得 ,即 ,从而有 . 故 . 例题2 设函数 在 上连续,在 内存在二阶导数,且 ,(I) 证明:存在 使 (II) 证明存在 ,使 证明:(I) ,又 在 上连万学海文续. 由积分中值定理得,至少有一点 ,使得 . , 存在 使得 .(Ⅱ) ,即 .又 在 上连续,由介值定理知,至少存在一点 使得 . 在 上连续,在 上可导,且 . 由罗尔中值定理知, ,有 .又 在 上连续,在 上可导,且 . 由罗尔中值定理知, ,有 .又 在 上二阶可导,且 . 由罗尔中值定理,至少有一点 ,使得 .