欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2020考研:硕士研究生考试数学难度如何

始吾弗信
名成者亏
去百度文库,查看完整内容>内容来自用户:启航考研总部2020考研:硕士研究生考试数学难度如何  考研数学一直是神一样的存在,很多考生都是因为数学没有考好,而导致分数线过低,低于国家线,从而与大学失之交臂。考研数学分为数一、数二、数三,其中数三是考财经类专业的学生报考,数一是工科的学生报考,数二一般是考专硕的学生报考。  那么这三者之间考试内容有何区别?一般而言数学一和数学三在考试内容差异不大,主要涉及高数、线代、概率统计,而数二一般不考概率统计,只涉及高数和线代。  2019年硕士研究生考试已经结束,从网上网友的反馈来看,大家感到数学难的比较多,也有很多同学表示数学不难,就是计算错了。想起来10年前自己考研,当时自己数学不好,于是每天去做数学题,平时也不敢去模拟做题,都是跟着题做,不会就看答案,然后反复去做真题,最后考研成绩还不错。  从今年的考试试题,来看试题总体中规中矩,不存在偏、难、怪的题,相信复习过的人都可以入手,但是在计算的时间上花费时间长了,浪费了时间,结果得不偿失。综合分析来看,今年考研数学题的难度和去年相比有所降低。  从选择题来看,题型没多大变化,拐点判定、无穷小、微分方程等都可以说是常见的题型。从填空题来看,个别填空题难度不大,但是计算量大,这在考场上对学生心理的影响比较大,一旦紧张可能慌

研究生考试总分是多少?

花枝俏
体同
研究生的考试总分是500分,你想考翻译硕士的话。他得总分还是500分不变的。其中,政治100分,英语100,分数学或专业基础150分,你的专业课也占了150分!大概就是这样的一个丰富情况,的资料,你可以查阅百度的相关词条!相关链接:百度百科全国硕士研究生统一招生考试(Unified National Graate Entrance Examination),简称“考研”、“统考”。是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。是一项选拔性考试,所录取学历类型为普通高等教育。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(加入全国统考的学校全国统一命题)。硕士研究生招生按学位类型分为学术型硕士和专业型硕士研究生两种;按学习形式分为全日制研究生、非全日制研究生两种,均采用同等分数线选拔录取。选拔要求因层次、地域、学科、专业的不同而有所区别。考研国家线划定分为A、B类,其中一区实行A类线,二区实行B类线。一区包括:北京、天津、河北、山西、辽宁、吉林、黑龙江、上海、江苏、浙江、安徽、福建、江西、山东、河南、湖北、湖南、广东、重庆、四川、陕西。二区包括:内蒙古、广西、海南、贵州、云南、西藏、甘肃、青海、宁夏、新疆。据教育部公布的数据显示,2019年报名人数增幅达21.85%。继2019年硕士研究生报名人数高涨之后,2020年硕士研究生报名人数再次打破纪录,达到341万人,较2019年增长17.59% 。2019考研报名人数增加到290万人,报录比预计为3.6:1,较2018年明显提升。2020年考研报名人数再次上涨,共计 341万,报录比预计为4:1,达到近20年来最高。祝你考试成功!

2019考研数学一真题及答案解析参考

白小凡
户田
去百度文库,查看完整内容>内容来自用户:启航考研总部2019年考研数学一真题一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当时,若与是同阶无穷小,则A.1.B.2.C.3.D.4.2.设函数则是的A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设是单调增加的有界数列,则下列级数中收敛的是A.B..C..D..4.设函数,如果对上半平面()内的任意有向光滑封闭曲线都有,那么函数可取为A..B..C..D..5.设是3阶实对称矩阵,是3阶单位矩阵.若,且,则二次型的规范形为A..B..C..D..6.如图所示,有3张平面两两相交,交线相互平行,它们的方程组成的线性方程组的系数矩阵和增广矩阵分别记为,则A.B.C.D.7.设为随机事件,则的充分必要条件是A.B.C.D.8.设随机变量与相互独立,且都服从正态分布,则A.与无关,而与有关.B.与有关,而与无关.C.与都有关.D.与都无关.2、填空题:9~14小题,每小题4分,共24分.9.设函数可导,则=.10.微分方程满足条件的特解.11.幂级数在内的和函数.12.设为曲面的上侧,则=.13.设为3阶矩阵.若线性无关,且,则线性方程组的通解为.14.设随机变量的概率密度为为的分布函数,为的数学期望,则.3、解答题:15~23(

2019数学考研

维克多
揽蔓其枝
去买盗版视频才几十到一百多

考研高等数学B考试范围是什么?比数三难吗?

歪歪斜斜
花枝俏
考研数学高数两大重点体系怎么学好很多同学不想考数学很大程度上是因为害怕高数,高数难不难?难!但是难就不好考吗?关键还在于你如何去复习。搞清知识体系,找到突破口,数学小白也可以顺利通过。下面就带大家来具体解读下高数的知识体系。考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计。但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首。其二,科目之间的先后联系导致先复习高数。线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性。为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的。这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点,而不是只见树木不见森林。►高数到底是什么?高等数学从大的方面分为一元函数微积分和多元函数微积分。一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学。另外还有微分方程和级数,这两章内容可看成是微积分的应用。除此之外还有向量代数与空间解析几何。其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍。一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的。正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭。在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分。2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强。这一章可从导数微分概念、计算、应用、中值定理三方面学复习。3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎么描述都不为过。因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到。4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考。微分方程本质上还是不定积分的计算。二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用。多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目。最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容。►高数该怎么学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢。由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸。同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了。最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数。以上是河南中公考研为大家整理的“2019考研数学高数两大重点体系怎么学好”相关内容,河南中公考研为广大学子 推出五一集训营、VIP1对1 ,针对每一个科目要点进行深入的指导分析,还会根据每年的考研大纲进行针对性的分析哦~欢迎各位考生了 解咨询。同时,中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力!河南中公考研将为大家及时提供相关资讯。另外,为了帮助考生更好地复习,你还可以关注:河南中公考研考研菌大大,会及时提供福利给大家。同时,河南中公考研一直为大家推出考研直播课堂,足不出户就可以边听课边学习,为大家的考研梦想助力

我是文科生,考研还用考数学吗

华严经
聚则为生
具体要以所报考的专业为标准,有的专业不需要考数学,例如:会计、图书情报、工商管理、公共管理、旅游管理、工程管理和审计等专业学位硕士初试设置两个单元考试科目,即外国语、管理类联考综合能力,满分分别为100分、200分。考研数学分为数一、数二、数三,其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。扩展资料:文科生备考数学的注意事项:1、重视结合考研数学大纲进行复习考研数学考试大纲不仅是命题人要遵循的出题原则,也是各位复习的依据。考试的大纲与教学大纲是有所区别的,所以搞清楚哪些是考试大纲的内容,哪些是考试不要求的,可以帮你节省许多时间。2、改变文科学习方式对大多数文科生而言,数学考试之所以难,就在于题目变化多,分析起来没有头绪。有时候做了大量的练习,题目一变化可能就没有头绪,看起来是考察同一个定理,却找不到突破口。数学要求严谨,有严格的论证和详细的推理,所以学习数学,不能放过细节。3、保证做题的质量数学的学习中效率永远是第一的,花再多的时间,效率低下都是无用功。所以提高做题的效率,做到每做一个题就有一个收获,弄懂原理,知道出题的题源,才能以不变应万变。参考资料来源:百度百科-考研数学参考资料来源:研招网-教育部关于印发《2019年硕士研究生招生工作管理》

今年我要考研,考的是高数四,谁能告诉我高数四都包括什么?是怎么的难度??谢谢!!

贩卖爱
类人猿
数学四考试大纲 [考试科目] 微积分、线性代数、概率论 微积分 一、函数、极限、连续 考试内容 函数的概念及其表示法函数的有界性、单调性、周期性和奇偶性反函数、复合函数、隐函数、分段函数基本初等函数的性质及其图形初等函数数列极限与函数极限的概念函数的左极限和右极限无穷小和无穷大的概念及其关系无穷小的基本性质及阶的比较极限四则运算两个重要极限函数连续与间断的概念初等函数的连续性闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法。 2.了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数、反函数、隐函数和分段函数的概念。 4.掌握基本初等函数的性质及其图形,理解初等函数的概念。 5. 会建立简单应用问题中的函数关系式。 6.了解数列极限和函数极限(包括左、右极限)的概念。 7. 了叔无穷小的概念和其基本性质掌握无穷小的阶的比较方法,了解无穷大的概念及其与无穷小的关系。 8.了解极限的性质与极限存在的两个准则(单调有界数列有极限、夹逼定理),掌握极限四则运算法则,会应用两个重要极限。 9.理解函数连续性的概念(含左连续与右连续)。 10.了解连续函数的性质和初等函数的连续性。了解闭区间连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。 二、一元函数微分学 考试内容 导数的概念函数的可导性与连续性之间的关系导数的四则运算基本初等函数的导数复合函数、 反函数和隐函数的导数高阶导数微分的概念和运算法则罗尔 (Rolle) 定理和拉格朗日(lagrange)中值定理及其应用洛比大(L'Hospital)法则函数单调性函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值 考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际和弹性的概念)• 2.掌握基本初等函数的导数公式、导数的四则运算法则及复函数的求导法则;掌握反函数与隐函数求导法,了解对数求导 3.了解高阶导数的概念,会求二阶导数以及较简单函数的n阶导数。 4.了解微分的概念,导数与微分之间的关系,以及一阶微分试的不变性;掌握微分法。 5.理解罗尔定理和拉格朗日中值定理的条件和结论,掌握这两个定理的简单应用 6.会用洛必达法则求极限。 7.掌握函数单调性的判别方法及简单应用,掌握极值、最大值和最小值的求法(含解较简单的应用题)。 8.掌握曲线凹凸性和拐点的判别方法,以及曲线的渐近线的求法。 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形。 三、一元函数积分学 考试内容 原函数与不定积分的概念不定积分的基本性质基本的积分公式不定积分的换元积分法和分部积分法定积分的概念和基本性质积分中值定理变上限积分定义的函数及其导数牛顿一莱布尼茨(NewtOn一Deibniz)公式定积分的换元积分法和分部积分法广义积分的概念及计算定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质、基本积分公式;掌握计算不定积分的换元积分法和分部积分法。 2.了解定积分的概念和基本性质;掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法;会求变上限积分的导数。 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用题。 4.了解广义积分收敛与发散的概念,掌握计算广义积分的基本方法,了解广义积分的收敛与发散的条件。 四、多元函数微积分学 考试内容 多元函数的概念二元函数的几何意义二元函数的极限与连续性有界闭区域上二元连续函数的性质(最大值和最小值定理)偏导数的概念与计算多元复合函数的求导法隐函数求导法高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值。二重积分的概念、基本性质和计算无界区域上的简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的表示法与几何意义。 2.了解二元函数的极限与连续的直观意义。 3.了解多元函数的偏导数与全微分的概念,掌握求复合函数偏导数和全微分的方法;会用隐函数的求导法则。 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值。会用拉格朗日乘数法求条件极值。会求简单多元函数的最大值和最J、值,并会求解一些简单的应用题。 5.了解二重积分的概念与基本性质,会计算较简单的二重积分(含利用极坐标进行计算);会计算无界区域上较简单的二重积分。 线性代数 一、行列式 考试内容 行列式的概念和基本性质行列式按行(列)展开定理克莱姆(Crammer)法则 考试要求 1.理解N阶行列式的概念。 2.掌握行列式的性质,会应用行列式的性质和行列式按行(列)展开定理计算行列式。 3.会用克莱姆法则解线性方程组。 二、矩阵 考试内容 矩阵的概念单位矩阵、对角矩阵、数量矩阵、三角矩阵和对称矩阵、矩阵的和数与矩阵的积、 矩阵与矩阵的积、 矩阵的转置、逆矩阵的概念和性质、矩阵的伴随矩阵、矩阵的初等变换、初等矩阵、分块矩阵及其运算矩阵的秩 考试要求 1.理解矩阵的概念,了解几种特殊矩阵的定义和性质。 2.掌握矩阵的加法、数乘和乘法以及它们的运算法则;掌握矩阵转置的性质;掌握方阵乘积的行列式的性质。 3.理解逆矩阵的概念,掌握逆矩阵的性质。会用伴随矩阵求矩阵的逆。 4.了解矩阵的初等变换和初等矩阵的概念;理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩。 5.了解分块矩阵的概念,掌握分块矩阵的运算法则。 三、向量 考试内容 向量的概念向量的和数与向量的积向量的线性组合与线性表示向量组线性相关与线性无关的概念、性质和判别法向量组的极大线性无关组向量组的秩 考试要求 1.了解向量的概念。掌握向量的加法和数乘的运算法则。 2.人理解向量的线性组合与线性表示、向量组线性相关、线性元关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。 3.理解向量组的极大无关组的概念,掌握求向量组的极大无夫组的方法。 4.理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩。 四、线性方程组 考试内容 线性方程组的解线性方程组有解和尤解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解 考试要求 1.理解线性方程组解的概念,掌握线性方程组有解和无解的判定方法。 2.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。 3.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解。 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念相似矩阵矩阵的相似对角矩阵实对称矩阵的特征值和特征向量 考试要求 1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质。掌握求矩阵的特征值和特征向量的方法。 2.理解矩阵相似的概念,掌握相似矩阵的性质;了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法。 3.了解实对称矩阵的特征值和特征向量的性质。 概率论 一、随机事件和概率 考试内容 随机事件与样本空间事件的关系事件的运算及其性质事件的独立性完全事件组概率的定义概率的基本性质古典型概率条件概率加法公式乘法公式全概率公式和贝叶斯(BAYES) 公式独立重复试验 考试要求 1.了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算。 2.理解概率、条件率的概念,掌握概率的基本性质,会计算古典型概率;掌握概率的加法、剩法公式,以及全概率公式、贝叶斯公式。 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。 二、随机变量及及其概率分布 考试内容 随机变量及其概率分布随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的概率分布二维随机变量及其联合(概率)分布二维离散型随机变量的联合概率分布和边缘分布二维连续型随机变量的联合概率密度和边缘密度随机变量的独立性常见二维随机变量的联合分布随机变量函数的概率分布 考试要求 1.理解随机变量及其概率分布的概念;理解分布函数F(x)=P{X≤x} 的概念及性质;会计算与随机变量相关的事件的概率。 2. 理解离散型随机变量及其概率分布的概念;掌握0一1分布、二项分布、超几何分布、泊松(Poison)分布及其应用。 3.理解连续型随机变量及其概率密度的概念;掌握概率密度与分布函数之间的关系;掌握均匀分布、指数分布分布及其应用 4.理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及其两种基本形式:离散型联合概率分布和边缘分布、连续型联合概率密度和边缘密度;会利用二维概率分布求有关事件的概率。 5.理解随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。 6. 掌握二维均匀分布,了解二维正态分布的密度函数,理解其中参数的概率意义。 7.掌握根据自变量的概率分布求其较简单函数的概率分布的基本方法。 三、随机变量的数字特征 考试内容 随机变量的数学期望、方差、标准差以及它们的基本性质随机变量函数的数学期望二随机变量的协方差及其性质二随机变量的相关系数及其性质 考试要求 1.理解随机变量数字特征(期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计算具体分布的数字特征,掌握常用分布的数字特征 2.会根据随机变量调的概率分布求其函数G(X)的数学期望Eg(X)。 四、中心极限定理 考试内容 泊松(POISSON)定理列莫弗一拉普拉斯(DEMOIVRE)(Laplace)定理、二项分布以正态分布为极限分布)列维一林德伯格(Levi一Lindberg)定理(独立同分布的中心极限定理) 考试要求 1.掌握泊松定理的结论和应用条件,并会用泊松分布近似计算二项分布的概率。 2.了解列莫弗~拉普拉斯中心极限定理,列维一林德伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关随机事件的概率。 [试卷结构] (一)内容比例 微积分约50% 线性代数约25% 概率论约25% (二)题型比例 填空与选择题约30% 解答题(包括证明题)约70%我也想考的,这个是我下载的数四的大纲数四应该是数一至数四中最简单的。当然还有一个叫农学门类联考的数学更简单。下面是06数学大纲。每年都有些变化,但应该不大参考资料:http://..com/question/4930165.html

2019年考研数学3的张宇的视频,跪求一下

贡职不美
爱死你
21的提取码:4bid

打算参加19考研,大学期间没怎么学数学,高数复习的先后顺序该怎样安排呢?

乱马
廉贪之实
首先按照考试大纲划分复习范围。在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。其次按照大纲对数学的基本概念、基本方法和基本定理准确把握。高等数学考查还是以考查考生的基本知识和基本技能为住,考卷中偏题和怪题不是很多,所以考生先要从基础学起,先把教材中的一些概念、定理、公式复习好,牢牢地记住,并在此基础上选择一些题目进行强化。如果基础不是非常好,建议可以报个考研辅导班,在老师的带领下将所学的知识进一步强化巩固。最后基本功扎实后,就要大量做题。数学只有通过做大量的题目才能有质的飞跃。基础阶段高数主要做教材上的习题及课后练习题,做一本书尽量做好详细的计划,当然做计划也是有技巧的:每天完成一章。因为每一章的内容多少和难度不同,不能一概而论,否则就会出现某一章一会就做完了,另外一章却做了一天也没结束,这样还容易打乱你其他科目的复习计划,毕竟考研不是只考数学。以上是中公考研整理的高数复习的先后顺序,供您参考。