欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

我本科是信管专业的,考研的话想学人工智能,不知道该往哪方面发展?

爱情树
不监于体
我硕士专业是研究神经网络的,也就是人工智能中的一个方向,就像你说的人工只版能是很大的学科,没有人权工智能专业,肯定是细分的,神经网络,专家系统,,,,一般都是自动化对口专业了,就像楼下说的,如果要考名校,跨专业的话,很难,除非在面试中你能表现出才华横溢的一面征服在场老师。另外,你打算读博么?将来出来做研究工作?如果不打算,劝你不要选人工智能相关专业,这是很前沿的科学,前沿到现在还不能广泛地应用于实际,大多都是纸上谈兵,也就是说,没有公司认这个,研究所研究这个的也不多,所以你将来就业的路会很窄,除非你业余学习实用技术,那又何必呢,不如直接选个实用的专业。这是我的经验之谈哈,我的同学们找工作都比较困难的,到毕业的时候你就知道现实和理想的差距有多大了!我刚考过一般情况下如果你要跨专业报考,如果是名校的话,很困难,内因为人家对专业知识要求很高,容除非你特别厉害比如我刚经历过的西交大的研究生复试400分以上的就有被卡掉的原因很简单不是本专业或者类似专业 专业素养不行但是不如果你觉得你对所报考的专业了解很深的话也可以的不过要更加 的努力啊

考研选人工智能这个专业需要什么条件才可以?

降鬼记
假有
081101 控制理论与控制工程 081104 模式识别与智能系统 考这两个专业比较对口,不过各个学校要求不同,所考的专业也不同。不过《自动控制原理》大部分院校都是要考的

研究生专业有和人工智能相关比较大的专业么

尚志
火幽灵
这应该是工学类的专业比较多,建议可以在研招网上面查找详细的专业研究方向以及学校等等信息。

考研人工智能

人有能游
爱之谷
人工智能的研究领域及应用人工智能的研究领域分支较多,从研究角度来分有三大分支:知识工程(knowledge engineering)、模式识别(pattern recognition)与机器人学(robotoligy)。这里仅择其中几种研究领域进行粗略的介绍。专家系统 1977年费根鲍姆提出“知识工程”,把实用的人工智能称为知识工程,标志着人工智能研究进入实际应用的阶段。他开发出了第一个“专家系统”(expert systems),认为“专家系统是一种智能的计算机程序,它运用知识和推理步骤来解决只有专家才能解决的复杂问题”。专家系统是指利用研究领域的专业知识进行推论,在解决专业的高级问题方面具有和专家相同能力的解决系统,属于人工智能的应用领域。目前,这一领域发展较快,应用也较广,已开发出不少有实际价值的专家系统.与传统的计算机程序相比,专家系统是以知识为中心,注重知识本身而不是确定的算法.专家系统所要解决的是复杂而专门的问题,对这些问题人们还没有精确的描述和严格的分析,因而一般没有解法,而且经常要在不确定或不精确的信息基础上做出判断,需要专家的理论知识和实际经验。标准的计算机程序能精确地区分出每一任务应该如何完成,而专家系统则是告诉计算机做什么,而不区分出如何完成,这是两者最大的区别。另外,专家系统突出了知识的价值,大大减少了知识传授和应用的代价,使专家的知识迅速变成社会的财富。再者,专家系统采用的是人工智能的原理和技术,如符号表示、符号推理、启发式搜索等等,与一般的数据处理系统不同。60年代末,以猜测为基础的第一个专家系统Dendral是由费根鲍姆和莱登伯格在斯坦福大学共同设计的,当时用于分析化合物的化学结构。这一系统至今仍被有机化学家经常使用。70年代中期,肖特列夫开发了Mycin这一专家系统,它是针对传染性血液病的诊断和治疗开发的。把患者的病状输入后,经过Mycin推理,最终由计算机开出处方来。据检测,Mycin的能力通常并不比专门的医生逊色。但它没敢投入实际使用,只是在培养医生的学校当作教材在使用。还有由斯坦福研究所美国地质调查国际组织开发的“探矿人”(Prospector)专家系统,波音公司的专家系统可辅助工程师更快地设计飞机等等。从不同角度,专家系统也可分为多种类型。从其完成的功能来分,可包括诊断、解释、修理、规划、设计、监督、控制等多种类型,这些功能又可分为两大类:分析型和综合型。分析型专家系统所要解决的问题有明确的、有限个数的解,系统的任务在于根据实际的情况选择其中一种或几种解。综合型专家系统的任务是根据实际的需要构造问题的解,包括设计、规划等问题。此外,也可根据知识的特征和推理的类型对专家系统进行分类。专家系统在各个领域的应用已经产生了很可观的经济效益,这从另一方面促进了对专家系统的理论和技术方面的研究。开发专家系统的关键是如何获取知识,如何表示、运用人类专家的知识,这方面的研究也就成了重点。对这一点,范伦特(K.Vanlent,1987)作了充分说明:“我们应该去建构一个专家系统,去模拟专家的问题解决。专家行为,不管是由人或机器产生,都是他(它)的知识产物,但是,用什么能解释知识呢?尽管可以用不同的方式进行测量或限定,但对专家知识的形式和内容的最终解释,是人用来获取知识的学习过程。实际上,对于专家问题解决,学习理论可能是唯一足够科学的理论。”自然语言处理自然语言处理是人工智能早期的研究领域之一,也是一个极为重要的领域,主要包括人机对话和机器翻译两大任务,是一门融语言学、计算机科学、数学于一体的科学。由于以乔姆斯基为代表的新一代语言学派的贡献和计算机技术的发展,自然语言理解正在变得越来越热门.有很多理由值得人们去研究如何使计算机程序能以某种方式使用自然语言的问题。口语是人们进行交际的自然形式,计算机用户希望能与机器对话交流。自然语言输入可以表示成口语,也能从键盘上打入,以文体的形式给出。最早的自然语言理解方面的研究工作是机器翻译。1949年,美国人威弗首先提出了机器翻译设计方案。20世纪60年代,国外对机器翻译曾有大规模的研究工作,耗费了巨额费用,但人们当时显然是低估了自然语言的复杂性,语言处理的理论和技术均不成热,所以进展不大。主要的做法是存储两种语言的单词、短语对应译法的大辞典,翻译时一一对应,技术上只是调整语言的同条顺序。但曰常生活中语言的翻译远不是如此简单,很多时候还要参考某句话前后的意思。例如,英语的一句话:Stay away from the bank.由于bank有银行和河堤两个意思,因此上面这句活应该翻译成“不要靠近那家银行”呢?还是“不要靠近河堤”呢?显然,光翻译这句话本身不看背景场合,不能保证翻译的正确,需要上下文联系起来才能正确翻译,这就是技术难度高之所在。从20世纪70年代末期,随着机器翻译理论和计算机技术的进步,机器翻译有很大的进展。一种常见的做法是将语言的翻译分为“原语言的理解”和“所理解的语言表达成目的语言”两个子过程。这样就需要—种中间语言,只要做好原语言到中间语言以及中间语言到目的语言的转换程序,就可完成翻译。这种办法还容易实现—种语言到多种语言的翻译系统。到现在为止,西语系的一些语言(例如法语、英语)之间的互译技术已经比较成熟,双向翻译辅助系统准确性比较高,不过,翻译完后,还要对译文稍作修改。1995年,松下公司试制成功一种可进行曰英文对译的可视电话,引起了人们的广泛兴趣。该系统由计算机语音识别、声音合成和可视电话通信三个子系统组成,使用者可以用各自的语言进行交谈,通过分析语音波形的变化,该系统可从3000个例句中选择出语意最接近的单词,其识别率达到98%。据称,只要备有专用词典,就可以用它来流利地进行会话。对于我们每天使用的汉语,总的来说,与其他语言的互译水平还不太高,其中与英语的互译水平稍微高—些,市面上已有多种翻译软件出售。主要是我们对汉语的形式化研究还不够,特别是汉语与西方语言不是一个语系,翻译起来难度较大。总之,要真正建立一个能够生成和理解自然语言的计算机处理系统是相当困难的。因为,语言的生成和理解是一个极为复杂的编码和解码过程,一个能理解用自然语言来表达信息的计算机系绕,就应像人那样,不仅需要掌握上下文知识和语境等有关信息,而且还要能够利用这些知识进行推理,人具备大量的经验以及拥有自己的观点和对世界的看法,而现在的机器还做不到这一点。机器翻译离达到“自然的理解和表达”这个最终目标还有相当大的距离。 目前所能做到的仍然是人工辅助型的翻译系统,即靠人对翻译的结果进行修正,来获得自然的翻译。推理人类智力的优越性表现在人能3335313130思维、判断和决策。思维是人类在感性认识的基础上形成的理性认识,是通过分析和综合过程来实现的,而人类思维中的分析综合过程则产生了质变,在一般的分析和综合基础上,产生了抽象和概括,比较和分类、系统化和具体化等一系列新的、高级的、复杂的思维能力,在头脑中运用概念作出判断和推理。要使机器具有智能,就必须使其具有推理的功能。推理是由一个或几个判断推出另一个判断的一种思维形式,也即从已有事实推出新的事实的过程。在形式逻辑中,推理由前提(已知判断)、结论(被推出的判断)和推理形式(前提和结论之间的联系方式)组成。人类之所以能高效率地解决一些复杂的问题,这除了拥有大量的专门知识外,还由于人具有合理选择知识和运用知识的能力,也即推理能力和推理策略。以符号逻辑为基础的人工智能,是以逻辑思维和推理为主要内容的。传统的形式化推理技术,是以经典的谓词逻辑也即演绎推理为基础,广泛应用于早期的问题求解和定理证明中,但随着人工智能研究的不断深入,人们在研究中碰到的许多复杂问题不能用严格的演绎推理来解决,因而对非单调逻辑推理等方式的研究正迅速发展起来,已成为人工智能的重要研究内容之一.感知问题感知问题是人工智能的一个经典研究课题,涉及神经生理学、视觉心理学、物理学、化学等学科领域,具体包括计算机视觉和声音处理等。计算机视觉研究的是,如何对由视觉传感器(如摄像机)获得的外部世界的景物和信息进行分析和理解,也就是说如何使计算机“看见”周围的东西。声音处理则是研究如何使计算机“听见”讲话的声音,对语音信息等进行分析和理解。感知问题的关键是必须把数量巨大的感知数据以一种易于处理的精练的方式,进行简练、有效的表征和描述。对计算机视觉做出卓越贡献的是马尔(D.Marr)教授,他认为视觉是一个复杂的信息处理过程,并有不同的信息表达方式和不同层次的处理过程,而最终的目的是实现计算机对外部世界的描述。由此,他提出了三十层次的研究方法,包括计算理论、算法和硬件实现。他的理论奠定了计算机视觉研究的理论基础,并明确指出了研究内容和研究目标.目前,计算机视觉已在图像处理、立体与运动视觉、三维物体建模和识别等方面取得了很大的进展,但离建构一个实用的计算机视觉系统还有很大的距离。在2002年岁末,有关“智能人机交互”领域的重要研究内容之一“面像识别技术”在我国取得了突破性进展,其稳定性、识别率等都达到了国际先进水平,初步达到了实用阶段。面像识别技术使计算机“人性化”、“智能化”的水平大大提高。探索在下棋或思考问题或寻求迷宫出口时,人们总要探索解决问题的原理,这就需要对之进行专门的研究。探索是人工智能研究的核心内容之一。早期的人工智能研究成果如通用问题求解系统、几何定理证明、博弈等都是围绕着如何进行有效的搜索,以获得满意的问题求解。探索是人工智能研究和应用的基本技术领域。人工智能中的问题求解和通常的数值计算不同。人工智能的问题求解首先对一个给定的问题进行描述,然后通过搜索推理以求得问题的解,而数值计算是通过程序设计的算法来实现数值的运算。人工智能问题求解的过程就是状态空间中从初始状态到目标状态的探索推理的过程。探索的主要任务是确定如何选出一个合适的操作规则。探索有两种基本方式,一种是盲目探索,即不考虑给定问题的具体知识,而根据事先确定的某种固定顺序来调用操作规则。盲目探索技术主要有深度优先搜索、广度优先搜索;另一种是启发式搜索,考虑问题可应用的知识,动态地优先调用操作规则,探索就会变得更快。探索技术中重点是启发式搜索。一般地,对给定的问题有很多不同的表示方法,但它们对问题求解具有不同的效率。在许多的问题求解中,有很多与问题有关的信息可利用,使整个问题解决过程加快,这类与问题有关的信息称为启发信息,而利用启发信息的探索就是启发式探索。启发式探索利用启发信息评估解题路径中有希望的节点进行排序,优先扩展最有希望的节点,以实现问题解决的最佳方案。博弈博弈,指赌博的学说,对抗的学问,起源于下棋。让计算机学会下棋是人们使机器具有智能的最早尝试。早在1956年,人工智能的先驱之一 ——塞缪尔就研制出跳棋程序,这个程序能够从棋谱中进行学习,并能从实战中总结经验。当时最轰动的一条新闻是塞缪尔的跳棋程序下赢了美国一个州的跳棋冠军。不过,在随后几年与世界冠军的较量中它没能占到便宜。今天的个人计算机家用软件上一般都有跳棋程序、象棋程序、五子棋程序甚至是围棋程序。即使你选择的是初级水平,要赢计算机一盘棋还真不容易呢。事实上,对于跳棋、象棋、五子棋以及围棋等博弈游戏,其过程完全可用一棵博弈树来表示,利用最基本的状态空间搜索技术来找到一条必胜的下棋路线。遗憾的是,这棵博弈树往往大得惊人,特别是像象棋程序和围棋程序。即使计算机的存储空间能够装得下所有的状态,花在搜索上的时间(也就是通常所谓朝前看几步的时间)常常长得令人不能忍受。好在现在计算机的性能越来越高,存储空间也越来越大,给人感觉上好像计算机的棋力提高了。另外,现有的计算机下棋程序建立在传统的状态空间搜索技术基础上,通过—些启发式算法对棋局中间状态获胜的可能性进行估计,并以此来决定下—步该怎么走。这一方法可以大大减少状态空间的存储和搜索,从而为现代高性能计算机战胜国际—流下棋高手进一步铺平道路。从20世纪50年代起,计算机与国际象棋高手、大师的比赛一直是人们很感兴趣的话题,计算机通过与高手的比赛来不断改进程序,计算机界有人原以为计算机可以在80年代战胜国际象棋冠军,但实际时间却有所推延。IBM公司一直有开发博弈程序这样一个传统,当年的塞缪尔就隶属于IBM公司。90年代,IBM公司先后开发了多种高性能计算机及相应的下棋软件,并把经过不断改进的下棋程序和“深蓝”计算机的矛头直接对准当今国际象棋头号高手——俄国人卡斯帕罗夫。在新闻媒体的推波助澜之下,1997年5月在美国纽约,卡氏和“深蓝”展开了令全球瞩目的又一轮人机大战。前两盘,双方下成一比一平,之后,双方连下三盘和棋,在关键性的第六盘比赛中,“深蓝”计算机发挥出色,赢得了胜利,从而以“2胜3平1负”的总比分战胜了对手,令全球观众哗然;有人形容这是一场“像人一样的机器和像机器一样的人之间的比赛”。虽然 “深蓝”计算机取胜了,但是也不能说明人工智能取得了突破性的成就。正如卡氏所说,他们之间的较量是不公平的,“深蓝”计算机掌握了他与别人下棋的大量棋谱,用到的仍然是状态空间搜索、模式匹配等传统的人工智能技术,只不过是计算机速度大幅度提高罢了。计算机取胜卡氏另外一个重要的原因是除了计算机工程师之外,IBM公司还有一帮深谙国际象棋规则和计算机知识的高手躲在“深蓝”计算机后面帮助它出谋划策,及时调整程序,如此一来,卡氏岂有不输的道理,输棋只是时间早晚的问题。如果换一种棋,比如说用计算机和人下围棋,情况又会怎样呢?目前计算机要战胜围棋一流高手恐怕还有相当大的困难,这是因为围棋的状态空间又大了很多,又复杂了很多。机器人学机器人和机器人学是人工智能研究的另一个重要的应用领域,促进了许多人工智能思想的发展,由它衍生而来的一些技术可用来模拟现实世界的状态,描述从一种状态到另一种状态的变化过程,而且对于规划如何产生动作序列以及监督规划执行提供了较好的帮助。机器人的应用范围越来越广,已开始走向第三产业,如商业中心、办公室自动化等。目前机器人学的研究方向主要是研制智能机器人。智能机器人将极大地扩展机器人应用领域。智能机器人本身能够认识工作环境、工作对象及其状态,根据人给予的指令和自身的知识,独立决定工作方式,由操作机构和移动机构实现任务,并能适应工作环境的变化。智能机器人只要告诉它做什么,而不用告诉怎么做。它共有四种基本功能,分别是:(1)运动功能,类似于人的手、臂和腿的基本功能,对外界环境施加作用。(2)感知功能,获取外界信息的功能。(3)思维功能,求解问题的认识、判断、推理的功能。(4)人机通信功能,理解指示,输出内部状态,与人进行信息交流的功能。智能机器人是以一种“认知——适应”方式进行操作的。著名的机器人和人工智能专家布拉迪(Brady)曾总结了机器人学当前面临的30个难题,包括传感器、视觉、机动性、设计、控制、典型操作、推理和系统等几个方面,指出了机器人学当前急需解决的难题。只有在这些方面有所突破,机器人应用和机器人学才能更适应社会的要求,成为开发人类智力的帮手。今天,在仿真人各种外在功能的各个方面,机器人的设计都有很大的进展。现在有一些科学家在研究如何从生物工程的角度去研制高逼真度的仿真机器人。目前的机器人离人们心目中的能够做各种家务活,任劳任怨,并会揣摩主人心思的所谓“机器仆人”的目标还相去甚远。因为机器人所表现的智能行为都是由人预先编好的程序决定的,机器人只会做人要他做的事。人的创造性、意念、联想、随机应变乃至当机立断等都难以在机器人身上体现出来。要想使机器人融入人类的生活,看来还是比较遥远的事情。本回答被网友采纳

我要考研,人工智能专业,请问现在有哪些学校是可以报名的?

淡而无为
环渊
你本科学习计算机科学与技术专业,考人工智能方面的专业,不算是跨专业考研的,不同的院校的要求可能不一样的,你应该到你向报考的院校官网查询,以作有针对性的准备!

哪些大学研究生专业有人工智能,或者神经网络专业的?

计划男
百日咳
专门的这个专业不是很清楚貌似没有这个专业,不过很多大学的计算机系都涉及人工智能及神经网络人工智能,或者神经网络集中在弱人工智能,主要研究各类算法、模式识别等等南京大学南理工等还不错,供参考

关于人工智能专业研究生有哪些学校可以报考

怵惕之恐
好可爱
考就考个一本的研究生么,考二本研究生干嘛,一本学校里人工智能专业不少,像东南大学,北大,复旦,西安交大,成电,西电等都有

哪些大学研究生专业有人工智能,或者神经网络专业的?

猎狼人
是狸德也
专门的这个专业来不是很清楚源 貌似没有这个专业 ,不过很多大学的计算机系都涉及人工智能 及神经网络 人工智能,或者神经网络集中在弱人工智能,主要研究各类算法、模式识别等等 南京大学 南理工等还不错 ,供参考有些学校有机器学习和数据挖掘相关到专业,这些专业都会涉及人工智能和神经网络的课程,有机器学习专业的学校比较多,一般的理工学校都有

对了吧,我要考研,选人工智能专业,目前有哪些学校好选?

变羊记
人工智能是属于计算机门类。清华、中科院、哈工大、南京大学、浙大、中科大等这几个学校都是很强的。