欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

人工智能属于计算机哪个考研方向

若化为物
为计算机科学方向。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出3431363036一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。扩展资料:计算机考研要求规定:1、计算机科学与技术学科的初试科目调整后为4门,即政治理论、外国语、数学一和计算机学科专业基础综合,卷面满分值分别为100分、100分、150分和150分。2、计算机学科专业基础综合的考试内容包括:数据结构、计算机组成原理、操作系统和计算机网络,重点考查考生掌握相关基础知识、基本理论和分析问题解决问题的能力。考试内容及试卷结构在考试大纲中确定。3、计算机学科专业基础综合科目实行联合命题,命题工作由全国学位与研究生教育学会工科委员会在教育部考试中心指导下组织实施,阅卷工作由省级招生考试机构统一组织,有关考务工作要求另行通知。参考资料来源:百度百科-人工智能

请问有没有人工智能这专业的研究生的大学?

见巧乎王
将军日
你在百度上查一下设置人工智能本科专业的高校,比如清华、中科大、南专大等。然后登录这些属院校的研究生院官网查看2019年考研专业招生目录及相关要求。例如,南大专门设有人工智能学院,招收该专业的研究生。但是,人工智能这个专业报考需谨慎!要么你报考名校,就业能去很好的企业,年薪很高,比如腾讯,阿里,百度,华为。要是一般的学校干脆就不要报考了,就业很鸡肋,基本上就是毕业就失业!

人工智能 用到哪些专业??

神动于外
合则成体
人工智能核心课程系统设计移动通信系统概率理论运营策略电路分析离散数学计算机网络内基础网络安全容操作系统网络与分布式计算微积分算法与编程计算机系统 。人工智能大学前学术准备须具有良好的逻辑推理能力和缜密的思维,有较好的数学基础以及沟通和团队合作能力。对于想申请该方向研究生课程来说,高等数学、离散数学的基础以及编程、算法、数据库的应用是最重要的升学基础。人工智能研究与升学方向除了本专业外,我们还建议申请:通讯系统、管理信息系统、计算机科学、金融工程等领域的专业。人工智能常见职业信息管理员网络工程师互联网技术经理安全工程师。人工智能近似专业计算机工程/技术人工智能,信息技术,信息系统,信息系统安全,编程语言与软件工程,计算机科学,网络和电信,数据建模/数据库管理,通信工程信息科学,数学与计算机科学,计算机视觉。

考研人工智能

喜剧王
无对
人工智能的研究领3335313130域及应用人工智能的研究领域分支较多,从研究角度来分有三大分支:知识工程(knowledge engineering)、模式识别(pattern recognition)与机器人学(robotoligy)。这里仅择其中几种研究领域进行粗略的介绍。专家系统 1977年费根鲍姆提出“知识工程”,把实用的人工智能称为知识工程,标志着人工智能研究进入实际应用的阶段。他开发出了第一个“专家系统”(expert systems),认为“专家系统是一种智能的计算机程序,它运用知识和推理步骤来解决只有专家才能解决的复杂问题”。专家系统是指利用研究领域的专业知识进行推论,在解决专业的高级问题方面具有和专家相同能力的解决系统,属于人工智能的应用领域。目前,这一领域发展较快,应用也较广,已开发出不少有实际价值的专家系统.与传统的计算机程序相比,专家系统是以知识为中心,注重知识本身而不是确定的算法.专家系统所要解决的是复杂而专门的问题,对这些问题人们还没有精确的描述和严格的分析,因而一般没有解法,而且经常要在不确定或不精确的信息基础上做出判断,需要专家的理论知识和实际经验。标准的计算机程序能精确地区分出每一任务应该如何完成,而专家系统则是告诉计算机做什么,而不区分出如何完成,这是两者最大的区别。另外,专家系统突出了知识的价值,大大减少了知识传授和应用的代价,使专家的知识迅速变成社会的财富。再者,专家系统采用的是人工智能的原理和技术,如符号表示、符号推理、启发式搜索等等,与一般的数据处理系统不同。60年代末,以猜测为基础的第一个专家系统Dendral是由费根鲍姆和莱登伯格在斯坦福大学共同设计的,当时用于分析化合物的化学结构。这一系统至今仍被有机化学家经常使用。70年代中期,肖特列夫开发了Mycin这一专家系统,它是针对传染性血液病的诊断和治疗开发的。把患者的病状输入后,经过Mycin推理,最终由计算机开出处方来。据检测,Mycin的能力通常并不比专门的医生逊色。但它没敢投入实际使用,只是在培养医生的学校当作教材在使用。还有由斯坦福研究所美国地质调查国际组织开发的“探矿人”(Prospector)专家系统,波音公司的专家系统可辅助工程师更快地设计飞机等等。从不同角度,专家系统也可分为多种类型。从其完成的功能来分,可包括诊断、解释、修理、规划、设计、监督、控制等多种类型,这些功能又可分为两大类:分析型和综合型。分析型专家系统所要解决的问题有明确的、有限个数的解,系统的任务在于根据实际的情况选择其中一种或几种解。综合型专家系统的任务是根据实际的需要构造问题的解,包括设计、规划等问题。此外,也可根据知识的特征和推理的类型对专家系统进行分类。专家系统在各个领域的应用已经产生了很可观的经济效益,这从另一方面促进了对专家系统的理论和技术方面的研究。开发专家系统的关键是如何获取知识,如何表示、运用人类专家的知识,这方面的研究也就成了重点。对这一点,范伦特(K.Vanlent,1987)作了充分说明:“我们应该去建构一个专家系统,去模拟专家的问题解决。专家行为,不管是由人或机器产生,都是他(它)的知识产物,但是,用什么能解释知识呢?尽管可以用不同的方式进行测量或限定,但对专家知识的形式和内容的最终解释,是人用来获取知识的学习过程。实际上,对于专家问题解决,学习理论可能是唯一足够科学的理论。”自然语言处理自然语言处理是人工智能早期的研究领域之一,也是一个极为重要的领域,主要包括人机对话和机器翻译两大任务,是一门融语言学、计算机科学、数学于一体的科学。由于以乔姆斯基为代表的新一代语言学派的贡献和计算机技术的发展,自然语言理解正在变得越来越热门.有很多理由值得人们去研究如何使计算机程序能以某种方式使用自然语言的问题。口语是人们进行交际的自然形式,计算机用户希望能与机器对话交流。自然语言输入可以表示成口语,也能从键盘上打入,以文体的形式给出。最早的自然语言理解方面的研究工作是机器翻译。1949年,美国人威弗首先提出了机器翻译设计方案。20世纪60年代,国外对机器翻译曾有大规模的研究工作,耗费了巨额费用,但人们当时显然是低估了自然语言的复杂性,语言处理的理论和技术均不成热,所以进展不大。主要的做法是存储两种语言的单词、短语对应译法的大辞典,翻译时一一对应,技术上只是调整语言的同条顺序。但曰常生活中语言的翻译远不是如此简单,很多时候还要参考某句话前后的意思。例如,英语的一句话:Stay away from the bank.由于bank有银行和河堤两个意思,因此上面这句活应该翻译成“不要靠近那家银行”呢?还是“不要靠近河堤”呢?显然,光翻译这句话本身不看背景场合,不能保证翻译的正确,需要上下文联系起来才能正确翻译,这就是技术难度高之所在。从20世纪70年代末期,随着机器翻译理论和计算机技术的进步,机器翻译有很大的进展。一种常见的做法是将语言的翻译分为“原语言的理解”和“所理解的语言表达成目的语言”两个子过程。这样就需要—种中间语言,只要做好原语言到中间语言以及中间语言到目的语言的转换程序,就可完成翻译。这种办法还容易实现—种语言到多种语言的翻译系统。到现在为止,西语系的一些语言(例如法语、英语)之间的互译技术已经比较成熟,双向翻译辅助系统准确性比较高,不过,翻译完后,还要对译文稍作修改。1995年,松下公司试制成功一种可进行曰英文对译的可视电话,引起了人们的广泛兴趣。该系统由计算机语音识别、声音合成和可视电话通信三个子系统组成,使用者可以用各自的语言进行交谈,通过分析语音波形的变化,该系统可从3000个例句中选择出语意最接近的单词,其识别率达到98%。据称,只要备有专用词典,就可以用它来流利地进行会话。对于我们每天使用的汉语,总的来说,与其他语言的互译水平还不太高,其中与英语的互译水平稍微高—些,市面上已有多种翻译软件出售。主要是我们对汉语的形式化研究还不够,特别是汉语与西方语言不是一个语系,翻译起来难度较大。总之,要真正建立一个能够生成和理解自然语言的计算机处理系统是相当困难的。因为,语言的生成和理解是一个极为复杂的编码和解码过程,一个能理解用自然语言来表达信息的计算机系绕,就应像人那样,不仅需要掌握上下文知识和语境等有关信息,而且还要能够利用这些知识进行推理,人具备大量的经验以及拥有自己的观点和对世界的看法,而现在的机器还做不到这一点。机器翻译离达到“自然的理解和表达”这个最终目标还有相当大的距离。 目前所能做到的仍然是人工辅助型的翻译系统,即靠人对翻译的结果进行修正,来获得自然的翻译。推理人类智力的优越性表现3335313130在人能思维、判断和决策。思维是人类在感性认识的基础上形成的理性认识,是通过分析和综合过程来实现的,而人类思维中的分析综合过程则产生了质变,在一般的分析和综合基础上,产生了抽象和概括,比较和分类、系统化和具体化等一系列新的、高级的、复杂的思维能力,在头脑中运用概念作出判断和推理。要使机器具有智能,就必须使其具有推理的功能。推理是由一个或几个判断推出另一个判断的一种思维形式,也即从已有事实推出新的事实的过程。在形式逻辑中,推理由前提(已知判断)、结论(被推出的判断)和推理形式(前提和结论之间的联系方式)组成。人类之所以能高效率地解决一些复杂的问题,这除了拥有大量的专门知识外,还由于人具有合理选择知识和运用知识的能力,也即推理能力和推理策略。以符号逻辑为基础的人工智能,是以逻辑思维和推理为主要内容的。传统的形式化推理技术,是以经典的谓词逻辑也即演绎推理为基础,广泛应用于早期的问题求解和定理证明中,但随着人工智能研究的不断深入,人们在研究中碰到的许多复杂问题不能用严格的演绎推理来解决,因而对非单调逻辑推理等方式的研究正迅速发展起来,已成为人工智能的重要研究内容之一.感知问题感知问题是人工智能的一个经典研究课题,涉及神经生理学、视觉心理学、物理学、化学等学科领域,具体包括计算机视觉和声音处理等。计算机视觉研究的是,如何对由视觉传感器(如摄像机)获得的外部世界的景物和信息进行分析和理解,也就是说如何使计算机“看见”周围的东西。声音处理则是研究如何使计算机“听见”讲话的声音,对语音信息等进行分析和理解。感知问题的关键是必须把数量巨大的感知数据以一种易于处理的精练的方式,进行简练、有效的表征和描述。对计算机视觉做出卓越贡献的是马尔(D.Marr)教授,他认为视觉是一个复杂的信息处理过程,并有不同的信息表达方式和不同层次的处理过程,而最终的目的是实现计算机对外部世界的描述。由此,他提出了三十层次的研究方法,包括计算理论、算法和硬件实现。他的理论奠定了计算机视觉研究的理论基础,并明确指出了研究内容和研究目标.目前,计算机视觉已在图像处理、立体与运动视觉、三维物体建模和识别等方面取得了很大的进展,但离建构一个实用的计算机视觉系统还有很大的距离。在2002年岁末,有关“智能人机交互”领域的重要研究内容之一“面像识别技术”在我国取得了突破性进展,其稳定性、识别率等都达到了国际先进水平,初步达到了实用阶段。面像识别技术使计算机“人性化”、“智能化”的水平大大提高。探索在下棋或思考问题或寻求迷宫出口时,人们总要探索解决问题的原理,这就需要对之进行专门的研究。探索是人工智能研究的核心内容之一。早期的人工智能研究成果如通用问题求解系统、几何定理证明、博弈等都是围绕着如何进行有效的搜索,以获得满意的问题求解。探索是人工智能研究和应用的基本技术领域。人工智能中的问题求解和通常的数值计算不同。人工智能的问题求解首先对一个给定的问题进行描述,然后通过搜索推理以求得问题的解,而数值计算是通过程序设计的算法来实现数值的运算。人工智能问题求解的过程就是状态空间中从初始状态到目标状态的探索推理的过程。探索的主要任务是确定如何选出一个合适的操作规则。探索有两种基本方式,一种是盲目探索,即不考虑给定问题的具体知识,而根据事先确定的某种固定顺序来调用操作规则。盲目探索技术主要有深度优先搜索、广度优先搜索;另一种是启发式搜索,考虑问题可应用的知识,动态地优先调用操作规则,探索就会变得更快。探索技术中重点是启发式搜索。一般地,对给定的问题有很多不同的表示方法,但它们对问题求解具有不同的效率。在许多的问题求解中,有很多与问题有关的信息可利用,使整个问题解决过程加快,这类与问题有关的信息称为启发信息,而利用启发信息的探索就是启发式探索。启发式探索利用启发信息评估解题路径中有希望的节点进行排序,优先扩展最有希望的节点,以实现问题解决的最佳方案。博弈博弈,指赌博的学说,对抗的学问,起源于下棋。让计算机学会下棋是人们使机器具有智能的最早尝试。早在1956年,人工智能的先驱之一 ——塞缪尔就研制出跳棋程序,这个程序能够从棋谱中进行学习,并能从实战中总结经验。当时最轰动的一条新闻是塞缪尔的跳棋程序下赢了美国一个州的跳棋冠军。不过,在随后几年与世界冠军的较量中它没能占到便宜。今天的个人计算机家用软件上一般都有跳棋程序、象棋程序、五子棋程序甚至是围棋程序。即使你选择的是初级水平,要赢计算机一盘棋还真不容易呢。事实上,对于跳棋、象棋、五子棋以及围棋等博弈游戏,其过程完全可用一棵博弈树来表示,利用最基本的状态空间搜索技术来找到一条必胜的下棋路线。遗憾的是,这棵博弈树往往大得惊人,特别是像象棋程序和围棋程序。即使计算机的存储空间能够装得下所有的状态,花在搜索上的时间(也就是通常所谓朝前看几步的时间)常常长得令人不能忍受。好在现在计算机的性能越来越高,存储空间也越来越大,给人感觉上好像计算机的棋力提高了。另外,现有的计算机下棋程序建立在传统的状态空间搜索技术基础上,通过—些启发式算法对棋局中间状态获胜的可能性进行估计,并以此来决定下—步该怎么走。这一方法可以大大减少状态空间的存储和搜索,从而为现代高性能计算机战胜国际—流下棋高手进一步铺平道路。从20世纪50年代起,计算机与国际象棋高手、大师的比赛一直是人们很感兴趣的话题,计算机通过与高手的比赛来不断改进程序,计算机界有人原以为计算机可以在80年代战胜国际象棋冠军,但实际时间却有所推延。IBM公司一直有开发博弈程序这样一个传统,当年的塞缪尔就隶属于IBM公司。90年代,IBM公司先后开发了多种高性能计算机及相应的下棋软件,并把经过不断改进的下棋程序和“深蓝”计算机的矛头直接对准当今国际象棋头号高手——俄国人卡斯帕罗夫。在新闻媒体的推波助澜之下,1997年5月在美国纽约,卡氏和“深蓝”展开了令全球瞩目的又一轮人机大战。前两盘,双方下成一比一平,之后,双方连下三盘和棋,在关键性的第六盘比赛中,“深蓝”计算机发挥出色,赢得了胜利,从而以“2胜3平1负”的总比分战胜了对手,令全球观众哗然;有人形容这是一场“像人一样的机器和像机器一样的人之间的比赛”。虽然 “深蓝”计算机取胜了,但是也不能说明人工智能取得了突破性的成就。正如卡氏所说,他们之间的较量是不公平的,“深蓝”计算机掌握了他与别人下棋的大量棋谱,用到的仍然是状态空间搜索、模式匹配等传统的人工智能技术,只不过是计算机速度大幅度提高罢了。计算机取胜卡氏另外一个重要的原因是除了计算机工程师之外,IBM公司还有一帮深谙国际象棋规则和计算机知识的高手躲在“深蓝”计算机后面帮助它出谋划策,及时调整程序,如此一来,卡氏岂有不输的道理,输棋只是时间早晚的问题。如果换一种棋,比如说用计算机和人下围棋,情况又会怎样呢?目前计算机要战胜围棋一流高手恐怕还有相当大的困难,这是因为围棋的状态空间又大了很多,又复杂了很多。机器人学机器人和机器人学是人工智能研究的另一个重要的应用领域,促进了许多人工智能思想的发展,由它衍生而来的一些技术可用来模拟现实世界的状态,描述从一种状态到另一种状态的变化过程,而且对于规划如何产生动作序列以及监督规划执行提供了较好的帮助。机器人的应用范围越来越广,已开始走向第三产业,如商业中心、办公室自动化等。目前机器人学的研究方向主要是研制智能机器人。智能机器人将极大地扩展机器人应用领域。智能机器人本身能够认识工作环境、工作对象及其状态,根据人给予的指令和自身的知识,独立决定工作方式,由操作机构和移动机构实现任务,并能适应工作环境的变化。智能机器人只要告诉它做什么,而不用告诉怎么做。它共有四种基本功能,分别是:(1)运动功能,类似于人的手、臂和腿的基本功能,对外界环境施加作用。(2)感知功能,获取外界信息的功能。(3)思维功能,求解问题的认识、判断、推理的功能。(4)人机通信功能,理解指示,输出内部状态,与人进行信息交流的功能。智能机器人是以一种“认知——适应”方式进行操作的。著名的机器人和人工智能专家布拉迪(Brady)曾总结了机器人学当前面临的30个难题,包括传感器、视觉、机动性、设计、控制、典型操作、推理和系统等几个方面,指出了机器人学当前急需解决的难题。只有在这些方面有所突破,机器人应用和机器人学才能更适应社会的要求,成为开发人类智力的帮手。今天,在仿真人各种外在功能的各个方面,机器人的设计都有很大的进展。现在有一些科学家在研究如何从生物工程的角度去研制高逼真度的仿真机器人。目前的机器人离人们心目中的能够做各种家务活,任劳任怨,并会揣摩主人心思的所谓“机器仆人”的目标还相去甚远。因为机器人所表现的智能行为都是由人预先编好的程序决定的,机器人只会做人要他做的事。人的创造性、意念、联想、随机应变乃至当机立断等都难以在机器人身上体现出来。要想使机器人融入人类的生活,看来还是比较遥远的事情。本回答被网友采纳

哪些大学研究生专业有人工智能,或者神经网络专业的?

言语
大波浪
专门的这个专业不是很清楚貌似没有这个专业,不过很多大学的计算机系都涉及人工智能及神经网络人工智能,或者神经网络集中在弱人工智能,主要研究各类算法、模式识别等等南京大学南理工等还不错,供参考

我想研究生考人工智能专业,请问本科学什么专业好打基础?(我想自考)

殆乎殆乎
麋鹿食荐
可行,多少人30岁开始学编程,都没问题,只要你有恒心,看那些白发苍苍的院士门,不用担心智力,大多数人靠的是努力!

人工智能专业就业做什么?

非耦
入曰
可以留校当老师,公司研发岗位,人工智能实验室等。具体岗位有:数据挖掘工程师、下位机算法工程师、售前技术支持(商业智能方向)、行业研究员(股市)、科技公司的电气工程师、C/C++算法开发工程师等等。人工智能专业毕业后的就业方向人工智能虽然属于一门高精尖学科,但它的研究对象是以计算机为主,融合社会科学和自然科学的内容。它的研究方向主要分为两类:一类是以算法为主、另一类则偏向机械自动化方向。目前国内高校本科并没有设置人工智能专业,在研究生阶段才开设相应的研究方向。本科只要选择与之相关的计算机类、电子信息类、自动化类、应用数学类即可。研究人工智能方向,需要具备良好的数学功底、编程能力、英语水平。本科阶段选择这几类专业,与之学科相关度较高,研究生阶段转型更加容易。目前研究生阶段开设人工智能方向的高校主要以C9院校和中科院研究所为代表。国外高校中,麻省理工、卡内基梅隆大学、斯坦福大学、加州大学伯克利分校四所高校,在美国计算机科学专业并列第一,也是人工智能研究方面做得最好的四所高校。最近几年,人工智能研究方向的毕业生,毕业后都进入大型互联网公司工作。BAT、华为、网易、美国的微软、谷歌、facebook、亚马逊等公司也非常青睐人工智能方向的毕业生。人工智能的就业前景目前人工智能已经为人类创造出了非常可观的经济效益,人工智能可以代替人类做大量人类不想做、不能做的工作,而且机器犯错误的概率比人低,并且能够持续工作,大大的提升工作效率。节约了大量的成本,未来的人工智能可能还会代替人类工作,代替人类做家务,帮助人类学习,甚至可以照顾老人和小孩,实时监护人类的健康,生病了直接给人来治疗,延长人类的寿命,让人类的生活变得越来越美好。 初级会计精讲600题(全科共两本书)自学必备习题册¥9元2020年HRBP-入门指导班HRBP必备六大核心¥免费2020年执业药师-零基础套餐五位一体闭环教学¥12802020年二级建造师-密训冲刺班考前密训冲刺10页纸¥3512020初级经济师-强化班自学必备习题册¥免费初级会计精编教材(全科共两本书)2本精编教材学会考点¥9元查看更多官方电话官方服务官方网站免费直播课免费领课领优惠券

关于人工智能专业研究生有哪些学校可以报考

时有终始
鬼之一也
考就考个一本的研究生么,考二本研究生干嘛,一本学校里人工智能专业不少,像东南大学,北大,复旦,西安交大,成电,西电等都有

考研选方向,虚拟现实和人工智能哪个前景更

空房子
而况人乎
1、纯理论性的,以强人工智能或者神经网络为研究方向,本科可以选择神经科学,也可以选修心理学、哲学、计算机科学。2、从算法层面对人工智能的优化,本科自然要学计算机科学了,但博弈论之类重视逻辑的小类别学科也有选修或者自学的必要。3、工业应用的方面。主要应该学习自动化和机械控制。一、人工智能专业就业前景:前景很好,中国正在产业升级,工业机器人和人工智能方面都会是强烈的热点,而且正好是在3~5年以后的时间。难度,肯定高,要求你有创新的思维能力,高数中的微积分、数列等等必须得非常好,软件编程(基础的应用最广泛的语言:C/C++)必须得很好,微电子(数字电路、低频高频模拟电路、最主要的是嵌入式的编程能力)得学得很好,还要有一定的机械设计能力(空间思维能力很重要)。这样的话,你就是人才,你就是中国未来5年以后急需的人工智能领域的人才。一门深入地钻研下去,你就是这个领域的专家甚至大师。二、人工智能专业就业方向 :人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。应用领域包括机器翻译、语言和图像理解、自动程序设计、专家系统等。1、如果是暂时没有太大倾向,既有可能做科学研究,也有可能做工程开发,可以选计算机方向,例如“计算机科学”(Computer Science),软件工程(Software Engineering),目前情况来看,最对口从事AI方向的的确是CS,AI具体的里面的子领域如Machine Learning,Computer Vision, Natural Language Processing,Data Mining等,在CS的高年级和研究生阶段都有对应的课程和研究方向。AI工作既需要非常扎实和广泛的数学基础同时也要求很高的实做能力,而CS正好在这两方面都有着重培养。2、如果是潜心做学术,搞理论研究,那么专业推荐选择“应用数学”。目前的机器学习机器学习本质上是微分方程、概率论、矩阵分析等等数学领域的一个应用场景。而近年来发展蓬勃的深度学习,正是机器学习的一个非常接近人工智能的分支。不排除现在的自动化、通信、机械 等专业在一定程度上都会往智能靠拢,无论是什么专业都可以在课外学习相关的知识,尤其是在这个优质学习资源随手可得,终身学习的时代,但在整体课程的安排上,这个专业还是会不同于其他的专业,而且这有个优点是在读研复试的时候会有些加分,缺点在于:如果不读研,那么就业平均情况是弱于其他专业的,毕竟这个专业在社会认可度较低,而且本科知识较浅,基本上对于职业化帮助不大。