欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

高等数学都研究什么啊?

时雨降矣
桃源镇
高等数学比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论逻辑称为中等数学,作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科,主要包括微积分学,其他方面各类课本略有差异。

高数是研究什么的学科详细介绍,要解释的专业详细不少于200字,谢谢

取境
马赛曲
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科研究生考试的基础科目。

大学里面高等数学都学的什么啊

夫有土者
上说下教
在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。微积分的基本概念和内容包括微分学和积分学。微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议。概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题。因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。扩展资料:19世纪以前确立的几何、代数、分析三大数学分支中,前两个都原是初等数学的分支,其后又发展了属于高等数学的部分,而只有分析从一开始就属于高等数学。分析的基础——微积分被认为是“变量的数学”的开始,因此,研究变量是高等数学的特征之一。原始的变量概念是物质世界变化的诸量的直接抽象,现代数学中变量的概念包含了更高层次的抽象。如数学分析中研究的限于实变量,而其他数学分支所研究的还有取复数值的复变量和向量、张量形式的。以及各种几何量、代数量,还有取值具有偶然性的随机变量、模糊变量和变化的(概率)空间——范畴和随机过程。描述变量间依赖关系的概念由函数发展到泛函、变换以至于函子。与初等数学一样,高等数学也研究空间形式,只不过它具有更高层次的抽象性,并反映变化的特征,或者说是在变化中研究它。例如,曲线、曲面的概念已发展成一般的流形。按照埃尔朗根纲领,几何是关于图形在某种变换群下不变性质的理论,这也就是说,几何是将各种空间形式置于变换之下来来研究的。无穷进入数学,这是高等数学的又一特征。现实世界的各种事物都以有限的形式出现,无穷是对他们的共同本质的一种概括。所以,无穷进入数学是数学高度理论化、抽象化的反映。数学中的无穷以潜无穷和实无穷两种形式出现。在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。另外一些形式上更为抽象的极限过程,在别的数学学科中也都起着基本的作用。还有许多学科的研究对象本身就是无穷多的个体,也就说是无穷集合,例如群、环、域之类及各种抽象空间。这是数学中的实无穷。能够处理这类无穷集合,是数学水平与能力提高的表现。为了处理这类无穷集合,数学中引进了各种结构,如代数结构、序结构和拓扑结构。另外还有一种度量结构,如抽象空间中的范数、距离和测度等,它使得个体之间的关系定量化、数字化,成为数学的定性描述和定量计算两方面的桥梁。上述结构使得这些无穷集合具有丰富的内涵,能够彼此区分,并由此形成了众多的数学学科。数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。参考资料:高等数学(基础学科名称)_百度百科

高数 研究函数连续性

罪行累累
卡特琳
是x的2n次幂吗?你的意思是fx等于n趋向于无穷时的极限 然后再讨论函数的连续性?

研究数学或者说学数学的意义是什么?

李翱
麻疯女
我是学数学的,说说自己的看法。先说我对“数学学习”意义的理解:对大部分理工科同学而言,数学可能的是一种解决问题的工具。只有学好了数学,才可能利用它来解决现实中的问题。比如说:我们已经有流体力学方程了,也有了强有力的计算软件,所以很多人就认为我们可以清楚的计算各种流体了。但事实上完全不是这样,如果没有学习过相关的数学方面的知识与方法,得到的结果很可能是错误的,或者计算过程是(非必要地)耗时的。所以只有学习了数学中的相关知识,才能更好地利用数学,特别是用它来解决工作中的问题。而对大部分普通人而言,数学除了是日常生活中必不可少的基本技能(当然,只是基础数学);如果能够对统计学、数学模型理论有所了解的话,我认为这两者可以显著地改善你对现实世界的认识,至少不会被“45度水+55度水为什么不是100度的水”这样的简单问题迷惑,也更加容易识别各种骗局、虚假宣传等等。另外,逻辑学可能真的没有你想象的那么简单。再说说我对“数学研究”的体会:现在的数学受到了两个方向的驱动:应用的需求与自身的发展。还是以流体力学为例,湍流现象的数学表示是一个重要的数学问题,他既来源于实验科学与工程发展对湍流现象了解的需要,同时也是数学本身解决自身产生的新课题的需要。在某种意义下,数学可以被看做是单纯的形式逻辑,可以不与现实产生联系,所以作为逻辑的发展,怎样的背景下产生怎样的逻辑结果,这就是数学本身可以产生的新课题,例如哥德巴赫猜想,既然有素数的概念,就自然地会问这样的问题;另一方面,数学是其他科学的语言,其他的科学以数学作为描述的方法提出了一系列的模型(比如牛顿的经典力学模型),然后利用数学的形式逻辑,就可以由这个模型直接得到一系列的结果(比如较精确地计算行星的轨道),这其中就可能产生应用上对形式逻辑的需求,即提出的模型能不能得到这个结论,由此产生的问题比如“三体问题”往往就是跟多偏向现实需要(事实上还是与数学自身相混合)的问题。数学研究就是致力于解决这些问题,从而使得自身内容更丰富,而其他学科对他的应用更加顺利。就先简单的说这些吧。

请问研究生考试中的数学三,涵盖了大学高数的哪些内容?

老兵传
三者若得
1.考研数学三大纲包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。2.高等数学内容:1.函数、极限、连续2.一元函数微分学3.一元函数积分学4.多元函数微积分学无穷级数5.常微分方程与差分方程。3.数学三相对数学一和数学二是最简单的,因为数学三是经管类的,而数学一、二是理工类的对数学要求较高。数学三确实比数一数二简单。数一最难,数二不考概率论,数三相对简单一些,主要靠的是高等数学(第五、第六版都可以)、线性代数、概率论。本人刚考完研,建议你买李永乐李正元《数学复习全书(经济类)》,很好用也很出名,我们同学考研的都用这个,数一、二、三都有,有时间可以多逛下考研论坛,里面有很多有用的东西。你可以到网上搜2011年考研的数学三大纲,每年的大纲变化都不太大,你可以参考下。

高数为什么要研究微分方程??

惮我
大决赛
一开始的微分方程是为了图形的面积简单的图形如同正方形等,我们有面积公式可以利用但是如同Y=X平方+2X-3 这个的曲线和X轴围成的上半部分面积,我们就没有公式可以利用 ,这个时候微分方程就出现了f(X平方+2X-3)dx=S l x=a到x=b (a ,b 分别为Y等于0时的值 ,有a<b)S求出就是面积了。当然这个是一个例子 ,微分方程有很多的运用

微积分课程的研究对象,研究内容,主要作用? 高等数学的一道问答题,求完整回答,务必正确!

自暴自弃
微积分是以函数为研究对象,运用极限手段分析处理问题的一门数学学科.内容主要包括极限、微分学、积分学及其应用.微分学包括求导数的运算,是一套关于变化率的理论.它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论.积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法.

考研究生,除了高数和英语还有什么?

钉子户
福克斯
政治,专业课更多追答我学广告设计的,一般都考什么?追答不好意思,广告设计的我不了解。你报考哪个学校,可以去查看那个学校的招生简章,复习大纲嗯