欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

对新课改下高中数学教学的几点建议

灵异日
百日红
新课标下高中数学是从课程内容结构、课程目标到教育理念都与传统高中数学课程很大的不同,对我国高中数学教学将产生深远而重大的影响,对教师的数学素养提出了更高的要求。因此,在新课标的实施中要实现数学课程改革的目标,一线的老师是起作关键的作用。在新课标下的高中数学老师要对高中数学新课程改革的精髓,对新一轮数学课程改革从理念、内容到实施,都要有深刻的理解与领悟。在一年多的新教材的教学中,在新课程教学理念逐渐的深入人心的氛围之中,作为一线的老师在教学实施中困惑也随之产生。一、新课标下高中数学教学实施存在的问题1、教材的问题。教材是按照教学大纲编写的,是教师传授知识的主要依据,是学生获得知识掌握技能、技巧的主要源泉之一。北师大版新教材存在着以下问题:(1)知识的顺序编排不合理。近年来,中学数学教材作了一些删减,并调整了一些内容的顺序。例:未学解不等式,就学指数函数、对数函数,造成学函数的定义域、值域,集合的运算等等问题难以解决。(2)知识的删减不科学。新教材大量增加了现代数学的重要基础知识,新教材不同与旧教材,最突出的部分是增加了“研究性课题”的学习。但是也存在着一定漏洞的问题。如:立体几何常用几何体的性质删减后,学生对几何体的交线在底面的交点在什么地方都不知道,这是老教材没有的事。(3)与其它学科的协调没有做好。我国设置高中数学课程的出发点,是为广大的高中学生提供进一步的数学基础,使之能适应现代化生活,为进一步学习做好准备。由于受西方数学等因素的影响,高中数学偏重于思维训练价值,而忽视了数学的应用价值,同时也出现了与其他学科脱节,不协调等现象。例如:人教版高一下学期生物必修2中要用到概率计算问题,而数学却把概率放到了高二上学期必修3当中。高一第一学期物理要学力学,会用到三角函数向量等知识,但数学却把这部分内容放在必修4才学,造成学科之间知识脱节。(4)教材内容与习题搭配有不合理之处。如人教版高一下学期生物必修2课本第28页的B组题,第49页的7题(个人所得税问题)等难度过大。(5)函数应用问题设置过难。我认为高中数学内容不应该只强调知识、内容等更要注重方法和过程,这样才能开启学生的思维,使学生树立正确的数学价值观。如高一上学期必修1课本第108页的例2,解答繁长,计算量大,达不到使学生对不同增长的函数模型的体验。(6)很难做到使用现代信息技术解决问题。由于学校条件的限制,学生不能使用计算机作函数的图象。由于大多数学生没有计算器,函数应用的教学中学生不能体会算法的思想,达不到应有的教学效果。2、初高中知识内容的衔接存在脱节现象。初中所学知识是高中知识的基础,高中知识则是初中知识的扩展和延伸。如果初中知识和高中知识存在着知识的脱节的话,学习高中知识就会有一定的困难。根据一年多的新教材的教学,我发现北师大版高中数学存在着初高中知识内容的衔接存在脱节现象。主要表现在:(1)部分应用知识要求降低。如:乘法公式只有两个(即平方差,完全平方公式)没有立方和立方差公式;在多项式相乘方面仅指一次式相乘,会影响到今后二项式定理及其相关内容的教学;因式分解的要求降低。初中只要求提公因式法、公式法,而十字相乘法、分组分解法新课标不作要求,但高中要经常用到这两种方法;反证法:课标只要求通过实例,体会反证法的含义,要求不高;但在高中遇到“至多”“最多”“至少”“唯一”等字词的证明题,需要用反证法。例如选修1-1《常用逻辑用语》一章经常出现。(2)知识衔接方面。例如:可化为一元二次方程的分式方程、无理方程、二元二次方程都已不作要求,会影响到今后学数列有关计算(往往用方程的思想解决问题);根式的运算明显淡化,如不加强根式运算,以后求圆锥曲线标准方程会受到影响。初中没有“轨迹”概念,高中讲解析几何时会讲到,学生对有关求轨迹问题很困惑,有无从下手之感;一元二次方程根的判别式在初中新课标不要求。在高中教直线与圆锥曲线综合应用时常常要用到,在涉及到函数图象交点问题也常用到,这无疑是一个障碍;平行线线段成比例定理初中没有,这样在立体几何的教学中,空间的线面平行等问题受到影响;空间直线、平面的位置关系初中没有。因此,高中学立体几何时会受影响。(3)知识删减问题。在新课标中,圆的垂径定理、弦切角定理、相交弦定理、切割线定理被删去了,在高中必修2的解析几何中常常会用到;相切在作图中的应用初中不作要求,在高中有相切问题;正多边形的有关计算。3、关于“小组学习”的困惑。《数学新课程标准》强调:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是学生学习数学的重要方式;合作交流的学习形式是培养学生积极参与、自主学习的有效途径”。合作交流的学习主要是以小组合作的形式,它能充分体现教学民主,能给予学生自由活动的时间和相互交流的机会。从我教学实践中感悟到:小组合作的学习方式看似简单易学,但稍有不慎就会使课堂气氛得不到较好的调控,达不到预期的目的。很多时候“合作”都只是流于形式,盲目跟从,学生没有得到真正发展。小组合作学习确实增加了学生参与的机会。但是常常是好学生机会,扮演着一种帮助的角色;困难学生成了听众,得不到独立思考的机会而直接从好学生中获得信息,致使困难学生在小组合作学习中的获益比在班级教学中的获益还少,在小组活动中好学生发言的机会多,代表小组汇报的现象多;小组活动中出现的一些放任自流的现象,……等等这些问题,不能不引起我们的思考。4、课时严重不足。高中数学新课程改革启动以后,教师普遍认为存在着课时严重不足的问题:教材越编越厚,习题越配越难,尤其是B、C组练习题。内容越上越多,感到教学如同追赶……。在教学中,经常出现一节课的教学任务完不成的现象,更谈不上留有巩固练习的时间。要用9周36课时(每周4课时)完成数学必修一个模块的教学任务,真是难上加难。每个学期要学完两大本书,相当于过去学习一年的内容。以北师大版高中数学必修1为例,初中的二次函数、指数幂的运算法则、对数概念及其运算等内容已经压到高中,和传统的高中数学内容相比,高中数学必修1还增加了函数与方程、函数建模及其应用等内容,造成了速度快、学得浅、负担重、质量差的现象。如:“平面向量的数量积”,规定2课时,“空间几何体的表面积与体积”规定1课时等等,如此编排引起了课时的严重不足,如果勉强按规定时间讲完,肯定不利于学生掌握,形成似懂非懂,“夹生饭”造成差生越来越多。二、新课标下高中数学教学实施存在的问题成因我校在实施高中数学过程中虽然老师进行了岗前培训,学校也反复的组织大家学习,老师们也意识到新课改的重要性和史命感。但课程改革推行到今天,遭遇到了种种问题,这些问题的产生也有着其必然的原因,概括起来,有以下几个方面。1、教材编排问题。由于大多数教材编委基本上是大学教授,他们长时间脱离了一线教学,在编排课本时忽略了初高中知识的衔接问题,以及对各科知识的交叉等方面了解不是很深,同时内容上大多注重大中城市学生的素质发展,没有考虑到边远山区孩子的实际受教育情况。综合以上几点原因,造成了高中新教材存在着部分瑕眦。2、学生自身问题。首先大部分高一学生原有的认知结构不完善,对新知识缺乏必要的知识基础,就会使新知识难于纳入到原有的认知结构之中,无法理解新知识的实质性含义,自然而然形成了知识认知结构不完善;其次学生的思维能力达不到教学内容的要求,相当一部分学生只重视机械模仿练习,不重视探索、概括、推理、质疑、反思和总结,表现在解决一些模型化、形式化的问题,如应用题、定理证明、代数推理等能力题型,就缺乏符号化、数学化的能力,找不到解题的目标和策略。3、教师自身问题。教师是教学活动的组织者,部分教师没有灵活的处理教材,又对教材理解不透,甚至出现了照本宣科的现象,这样容易造成学生接受知识方面的困难。如面对初中知识“十字相乘法”讲解问题,很多老师采取回避的态度,实际上可以采用数字游戏教学方法。三、解决问题的几点建议新课标下的高中数学分必修与选修两大类,必修有5个模块,这些内容是每一个高中生都要学习的,无论是毕业后进入社会还是进入大学深造都是非常重要的基础。主要注重打好数学基础,掌握基本能力。但内容的抽象性、理论性强,在能力要求方面远高于义务教育阶段的初中水平,这些都对老师们的理论和实践水平提出了前所末有的挑战,虽然笔者学浅,但在一年的新课改的教学实践中得到一点心得,给大家几点建议1、依据课标要求,创造性地使用教材,使用教具。高中数学课程标准是国家对高中学生在数学领域的基本素质的要求,教材则是实现课程目标,实施教学的重要资源,它是依据课标而编写的。在教学中,应以课标为主,创造性地使用教材,即用教材教而不是只教教材。数学教材中存在许多问题,教师应认真理解课标,对教材中不符合课标要求的题目要大胆地删减;对课标要求的重点内容要作适量的补充;对教材中不符合学生实际的题目要作适当的改编。此外,还应全面了解必修与选修内容的联系,要把握教材的“度”,不应采取一步到位法,如函数性质的教学,要多次接触,螺旋上升,实行分层教学。2、根据实际情况,采取行之有效的教学方法。教学是师生之间的对话、沟通、合作、共建的交往活动。采取行之有效的教学方法能收到事半功倍的效果。面对新课程,教师应改变旧的教学方式,充分发挥主导作用,成为学生学习知识建构的指导者和促进者。在高中数学新课程的实施中,教师应从学生已有的知识经验出发,创设丰富的教学情境,营造一个和谐的课堂气氛,倾听学生的回答并适度评价,为学生的发展提供时间与空间,激发学生探求新知识的兴趣。教师要培养学生形成良好的学习习惯,引导学生探究学习,领会数学思想方法,构建知识,训练技能,获得数学活动的经验同时,对于传统的行之有效的教学经验,我们应该继承和发扬。传统的听课理解、模仿记忆、练习作业等,仍然是当前高中数学学习的主要形式。可以对传统的学习方式适当改造,指导学生进行探究性学习,鼓励学生在解决数学问题的过程中,积极思考,探索规律。这样既解决了课时不足问题又解决了教材编排存在的漏洞问题。3、适应新课标的要求,灵活运用信息技术教学。多媒体教学相对于传统教学手段而言,直观新颖,能有效利用情景演示激发学生学习兴趣,开发学生的潜能,使有意识的学习活动和无意识的学习活动相结合。不仅丰富了教学内容,也活跃了课堂气氛,调动学生求知的自觉性和主动性。在教学中,把抽象的数学概念作形象化处理,灵活运用多媒体教学尤为重要。如:北师大版高中数学必修5“一元二次不等式的应用“例题解不等式(ⅹ-1)(ⅹ-2)(ⅹ-3)>0用数学软件或图形计算机作出函数y=(ⅹ-1)(ⅹ-2)(ⅹ-3)的图像,并追踪图像上的点的坐标,可以近似直观看出不等式的解集。如果没有采用这种解题方法,必须经过三步复杂的解题步骤才能完成,而且图像相当复杂。“书越来越难教”,这是普遍基层老师的感慨。如何在新课标下运用新的理念,解决新课标下高中教学存在的问题,真正地达到新课标的要求还需我们不断努力地摸索出新的教学方式,改变教学理念,提高学生们的学习兴趣。我们只有边实践边反思边改进,努力提升自己的综合能力,才能找到更适合学生终身发展的教学方法。新课程向我们提出了新的挑战,也给我们带来了新的机遇,我们应该把握住这次机会,和学生共同进步。

高中数学新课标和老版有什么区别

蔡沈
另一人
仔细对比之下,只是有些位置改变了,还增删了一些东西,主要是“必修三”上面的应该仔细看,有很多没听说过的东西。

新课标下高中数学各年级所学科目分别是哪些

不可
外内攉者
我想你问的应该是书本目录吧高一:数学 必修1 1. 集合 2. 函数概念与基本初等函数 必修2 1. 立体几何初步 2. 平面解析几何初步 必修3 1. 算法初步 2. 统计 3. 概率 必修4 1. 三角函数 2. 平面向量 3. 三角恒等变换高二 必修5 1. 解三角形 2. 数列 3. 不等式 选修2-1 1. 常用逻辑用语 2. 圆锥曲线与方程 3. 空间向量与立体几何 选修2-2 1. 导数及其应用 2. 推理与证明 3. 数系的扩充与复数的引入 选修2-3 1. 计数原理 2. 统计与概率高三 选修3-1 数学史选讲 选修3-2 信息安全与密码 选修3-3 球面上的几何 选修3-4 对称与群 选修3-5 欧拉公式与闭曲面分类 选修3-6 三等分角与数域扩充 选修4-1 几何证明选讲 选修4-2 矩阵与变换、内容与要求 选修4-3 数列与差分 选修4-4 坐标系与参数方程 选修4-5 不等式选讲 选修4-6 初等数论初步 选修4-7 优选法与试验设计初步 选修4-8 统筹法与图论初步 选修4-9 风险与决策 选修4-10 开关电路与布尔代数先解释下,如果你是文科生,那么只需学到选修2-2 如果是理科生,学完选修2-3之后还可以扩展下,不过考试内容就那些了,还有什么问题请,我会为你详细解答,望采纳,谢谢!

新高中数学新课程标准2018年版

卡梅尔
耕战
去百度文库,查看完整内容>内容来自用户:神马都有可能A新课标数学课程标准2017版一、课程的基本理念新课标的理念|旧课标的理念|1.课程宗旨:高中数学课程以学生发展为本,落实立德树人根本任务,培养和提高学生的数学核心素养。课程面向全体学生,实现:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。|2.课程内容:高中数学课程内容体现现代社会发展的需求、数学学科的特征、高中学生的认知规律,依据数学课程目标,特别是数学核心素养,精选课程内容。在课程内容安排上,注重处理好数学核心素养与课程内容、过程与结果、直接经验与间接经验的关系,注意与其他学科的联系;还关注与义务教育课程的衔接。|3.教学活动:高中数学教学活动的关键是启发学生学会数学思考,引导学生会学数学、会用数学。根据数学学科的特点,深入挖掘数学的育人价值,增强数学教学的育人功能。树立以发展学生数学核心素养为导向的课程意识与教学意识,将核心素养贯穿于数学教学的全过程。在教学中,教师应结合相应的教学内容,落实“四基”,培养“四能”,促进学生数学核心素养的形成与发展。【“四基”指基础知识、基本技能、基本思想、基本活动经验。“四能”指从数学角度发现和提出问题的能力、分析和解决问题的能力。】|4.学习评价:评价的依据是相应学习阶段学生数学核心素养的发展水平。应建立目标多元、方法多样的评价体系。|1.构建共同基础,提供发展平台|2.提供多样课程,适应个性选择|3.倡导积极主动、勇于探索的学习方

高中数学新课标学分制

搜于国中
森舞
“高中数学新课标实行学分制吗?”“新课标中的选修课考不考?”专家在接受记者采访时表示,“学分制”的说法不准确,应该说是“学分制管理”。 根据新课标,今后的高中数学课程将分为必修和选修,各由不同模块、系列、专题组成,并给予不同的学分。针对有媒体就以此认为是实行“学分制”,专家作了澄清。人民教育出版社中学数学室主任章建跃博士指出,新课改标准只是对每一模块或专题给出了学分,并不是说修到多少学分就能毕业,因此只能说是进行“学分制管理”。至于选修课考不考?专家表示,现在谁也说不准,今年高考有11个省市实行了自主命题,明年考试的自主权还将进一步提高,因此也不可能有一个统一的说法。 2007年初北京市教委宣布当年9月北京市高中将进入新的国家课程标准(简称高中新课标),这意味着2007年9月入学的高一新生将按照一套全新的课程内容标准完成高中学习。一时间各家媒体争相报道,但除了“学分制”这些表面变化,外界对于标准的实质内容了解甚少。具体到高中数学,作为全程参与课标研制、新课标人教版教材编写的数学教师我觉得有必要把新的变化和内容介绍给公众,给所有即将接触新课标的学生和教师一点帮助。 目前为止高中的教学内容主要依据《教学大纲》,《大纲》虽几经修订但主要的教学内容与上世纪70年代文革结束后的内容没有太大差别,时代的发展要求高中教学内容进行改革。本世纪初国家启动了《课程标准》的研制工作,先后推出了初中和高中的新课标并编写推行了新的教材。以下结合我参与的部分工作和个人感受做几点介绍:新课标产生经过详细论证和仔细研究。国家在研制高中数学课程标准的时候组织了大批数学教育界的专家学者分组拟定相关的教学内容,又经过几年的大范围研究讨论、教材范本试用最终定稿。新课标从理念上产生了较大变化,从内容上在保留必须内容的基础上大规模引入了区别于以往的新内容新知识。记得02、03年我加入课标实验研究的时候着实被这些变化吓了一跳,像算法这样的新内容在课标中占了相当的比重。 新教材发生很大变化。以往全国一致的人教版统编教材将被各家不同的教材所代替,目前通过国家审核出版的主要有人民教育出版社A版、B版、北师大版、和湖南教育出版社版。以我所参与编写的人教A版为例,组织了强大的编写阵容:由高校数学教育专家、出版社专业编辑、一线教师组成,其中包括像我这样来自北京各高中的5名数学教师。本套教材包括必修、选修共26本,目前还在陆续出版修订之中。 大批新知识进入课标。高中生将可以选择学习一大批新颖的数学内容,例如算法、数学史、信息安全与密码、对称与群、数列与差分、矩阵与变换、风险与决策等。这些知识有的是原来高校的数学内容,有些甚至是我们在高校都没学过的。可想而知这样的变化将给高中数学教学带来重大的挑战。 .诸多变化必将导致高考改革。今年两会期间教育部长表示为适应课程标准将对高考进行重大改革。目前2004年首批进入新课标试验的三个省市已经面临高考,此次北京在3年内较早进入课标改革,肯定会对2010年高考产生较大影响。具体改变至今没有任何资料,全社会都在关注我们也将不断跟进。http://www.maikr.com/kan.aspx?id=3b31a645-7089-4300-9ac9-03c6efb05a07

新课标高中数学选修要学什么

终南
百合
,必修1-5都要学,无论是水,但你选的是理科的话,就要学习数学的2-1到2-3系列的书,你想要学的是计算机,所以是属于理科的,就选理科方向的书记教材来学习,高中的教材中,选修和必修,只是靠得范围不同,而语文则依然是要学完得,好象的你选的X科目给你列几个:物理:3-1到3-5的书,着个是选修中必须学的,但是你可以选择补血3-4或3-3就是了化学:则是物质结构,有机化学基础,反应原理,实验化学,这四本里,物质结构,有机化学基础两本中任选译本来学,但是建议不要不学少一本,应为化学高考还是会涉及到的,所以最好都学,生物:就一本,那本关于基因的选修的那本,名字我忘了,应为你是理科的,所以我就不说文科的了

高中数学新课标有哪些重要变化

两个我
槭降目纬探峁梗?邮?Э纬棠诓课?煌? ⒉煌?枰?难?峁┝硕嗖愦危?嘀掷嗟难≡瘢?谏柚昧宋?逖?蚝霉餐?〉谋匦蘅问? 1-5 外,又为希望在人文、社会科学方面发展的学生设置了选修课系列 1,为希望在理工(包括部分经济类)等方面发展的学生设置了选修课系列2.系列1、系列2 对文、理科学生分别属有“限选”性质的基础课程.还设置了供这两类学生共同选择的富有拓展性和挑战性的选修课系列 3 和4,它们分别包括了 6 个与 10 个专题,旨在提高学生的数学素养,培养探究、阅读、交流、创新能力.根据《新课标》对学生选课的建议,文、理科学生各有两种基本选择.但严格说来,由于文科生的第一种选择可在系列3 的6 个专题中任选2 个,第二种选择可在前面的基础上继续在系列 4 的 10 个专题中任选 2 个,所以任何一位会计算组合数的人都可算得文科生的选择种数是一个很大的数字.同样,理科生的选择种数则更大.这样的设置,使学生在课程内容、方向、层次上进行的选择具有了实在的意义,真正有利于学生的个性发展. 另一方面,《新课标》为提供选择性给予了时间上的保证,这主要通过必修课时的调整来实现.《新课标》必修课总课时数为180,比全日制普通高级中学《数学教学大纲》(以下简称《原大纲》)必修课总课时数 280 减少 100 课时,这就使学生在高中三年学习期间可自主选择选修课的课时数大大增加.这无疑使扩大选择性更能落到实处. 还应提及的是,《新课标》在为学生提供选择性的同时,给学校和教师也留有一定的选择空间.面对为数不少的新的教学内容(有些甚至是数学前沿内容),他们可以根据学生的基本需求和自身的条件,制定课程发展计划,不断地丰富和完善供学生选择的课程,这是历任高中数学大纲所无的、《新课标》独有的一个创新的举措. 2.吐故纳新,构建信息时代的新“双基” “双基”是我国数学教育的优良传统,其奠定数学基础的良好功能得到国内外数学教育界的首肯.《新课标》在研制过程中,重新审定“双基”的内涵,把它看成一个动态的概念,在继承传统“双基”合理成分的同时,扬弃繁琐的计算、人为技巧化的难题和机械记忆的负担,增加适应信息时代发展需要的算法内容,把统计与概率、向量、导数、数据处理、数学建模”等学习活动,并且把它们作为贯穿于整个高中课程的主要内容,从数学课程内部为学生形成积极主动的、多样的学习方式创造有利的条件.特别是数学建模,自上世纪 90 年代初在我国大学生中开展竞赛以来,十几年中这项活动得到广泛开展,并且迅速向中学延伸.通过实践,其教育功能得到教育界人士的充分肯定.现在,它作为《新课标》倡导的一种新的学习方式进入高中课程,无疑为学生提供了自主学习的广阔空间.它有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其它学科的联系,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力. 4.强调对数学本质的认识,淡化数学的形式化表达 淡化形式、注重实质是上世纪90 年代初西南师大陈重穆、宋乃庆教授针对当时基础教育和数学教学中存在的问题,根据义务教育数学教材淡化概念的编写理念提出的一种主张.经过多年的探索与研究,得到数学教育界的广泛认同.《新课标》大力吸纳了这一进步的理念,强调对数学本质的认识,淡化形式化的表达.例如统计,《新课标》将内容设置为统计案例,使学生能通过案例来学习它的思想和方法,理解其意义和作用.又如对导数概念的理解,《新课标》也要求通过实例的分析,让学生经历从平均变化率过渡到瞬时变化率的过程,进而了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.显然,《新课标》这样的处理,就把形式化数学的学术形态转化成了学生易于接受的教育形态. 5.强调课程要体现数学的文化价值 《新课标》把数学文化作为与必修和选修课并列的一项课程内容,并要求非形式化地贯穿于整个高中课程之中.这使数学文化在课程中的地位骤然飙升.这一举措表明《新课标》对数学的德育功能的高度重视,体现了其鲜明的时代特色,表明它善于吸纳数学教育的最新理念,是一个开放的系统.这将使新的高中数学课程具有更全面的育人功能,在促进学生知识和能力发展的同时,情感、意志、价值观也得到健康的发展. 二、课程内容与要求的变化 1.新增教学内容 3 另外,新增数学建模¢或专题中.要求高中阶段至少安排一次较为完整的数学建模活动. 2.删减的教学内容 (原大纲的)课程 教学内容 课时数 选修II 极限 12 注:(1) 原大纲的“极限”内容被删减,但该内容中的“数学归纳法与数学归纳法举例”在《新课标》中被安排在选修2 -2“推理与证明”、选修4 -5“不等式选讲”中. (2) 以上可以看出,《新课标》新增许多教学内容,但这些内容绝大多数都是选修内容.同时,由于《新课标》对立体几何与平面解析几何的一些传统内容进行了整合,对已进入高中课程的微积分等内容进行了重新的设计,这就使高中新课程内容不致面临课时的紧张,从而整个课程能在新课程计划的框架下顺利实施. 3.部分教学内容必修与选修的调整 教学内容在原大纲中的情况 教学内容在新标准中的情况 统计: 选修(选修I、选修II) 统计:必修(数学3) 统计案例:选修(选修1-2、选修2-3) 简易逻辑:必修 常用逻辑用语:选修(选修1-1、选修2-1) 圆锥曲线方程:必修 圆锥曲线与方程:选修(选修1-1、选修2-1) 排列、组合、二项式定理:必修 计数原理:选修(选修2-3) 课程 教学内容 课时数 数学3(必修) 算法初步(含程序框图) 12 选修1-2 推理与证明 10 选修1-2 框图(流程图、结构图) 6 选修2 -2 推理与证明 8 选修3 -1 数学史选讲 18 选修3 -2 信息安全与密码 18 选修3 -3 球面上的几何 18 选修3 -4 对称与群 18 选修3 -5 欧拉公式与闭曲面分类 18 选修3 -6 三等分角与数域扩充 18 选修4 -2 矩阵与变换 18 选修4 -3 数列与差分 18 选修4 -6 初等数论初步 18 选修4 -7 优选法与试验设计初步 18 选修4 -8 统筹法与图论初步 18 选修4 -9 风险与决策 18 选修4 -10 开关电路与布尔代数 18 4 4.部分教学内容知识点的调整 5.在部分原有教学内容中某些知识点所在位置的调整 6.在部分原有教学内容中某些知识点教学要求的调整 课程 教学内容 增加知识点 删减知识点 数学1 函数概念与基本初等函数I 幂函数 数学2 立体几何初步 三垂线定理及其逆定理 数学2 平面解析几何初步 空间直角坐标系 数学3 概率 几何概型 数学3 统计 茎叶图 数学4 基本初等函数II(三角函数) 已知三角函数值求角 数学4 平面上的向量 线段定比分点、平移公式 数学5 不等式 分式不等式 选修1-1 选修2-1 常用逻辑用语 全称量词与存在量词 选修2-2 导数及其应用 定积分与微积分基本定理 选修4-4 坐标系与参数方程 柱坐标系、球坐标系 知识点 原大纲中所在教学内容 新课标中所在教学内容 函数的奇偶性 (必修)三角函数 (数学1)函数概念与基本初等函数I 两点间的距离公式 (必修)平面向量 (数学2)平面解析几何初步 简单线性规划问题 (必修)直线和圆的方程 (数学5)不等式 反证法 (必修)9(A)直线、平面、简单几何体 (选修1-2)推理与证明 (选修2-2)推理与证明 数学归纳法 (必修)研究性学习参考课题 (选修II)极限 (选修2-2)推理与证明 (选修4 -5)不等式选讲 5 三、同一教学内容课时的变化 课程 教学内容 提高要求 降低要求 数学1 函数概念与基本初等函数I 分段函数要求能简单应用 反函数的处理,只要求以具体函数为例进行解释和直观理解,不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数 数学2 立体几何初步 仅要求认识柱、锥、台、球及其简单组合体的结构特征;对棱柱,正棱锥、球的性质由掌握降为不作要求 数学3 统计 知道最小二乘法的思想 选修1-1 选修2 -1 常用逻辑用语 不要求使用真值表 选修1-1 圆锥曲线与方程 对抛物线、双曲线的定义和标准方程的要求由掌握降为了解 选修2 -1 圆锥曲线与方程 对双曲线的定义、几何图形和标准方程的要求由掌握降为了解,对其有关性质由掌握降为知道 选修1-1 选修2 - 2 导数及其应用 要求通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用 选修2 - 3 计数原理 对组合数的两个性质不作要求 选修4 - 4 坐标系与参数方程 对原大纲未作要求的直线、双曲线、抛物线提出了同样的写出参数方程的要求 原大纲理解圆与椭圆的参数方程降为选择适当的参数写出它们的参数方程 6 以上所列,仅仅是《新课标》变化的荦荦大端,还有许多承载现代课程理念的变化有原大纲 新课标 教学内容与性质 课时 教学内容与性质 课时 必修、选修课时增减(+、﹣) 集合、简易逻辑(必修) 14 集合(必修) 常用逻辑用语(选修1-1、2-1) 4 8 (必修)﹣10 (选修)+8 函数(必修) 30 函数概念与基本初等函数I (必修) 32 (必修)+2 三角函数(必修) 46 基本初等函数 II(三角函数)(必修) 三角恒等变换(必修) 解三角形(必修) 16 8 8 (必修)﹣14 直线和圆的方程(必修) 22 平面解析几何初步(必修) 18 (必修)﹣4 圆锥曲线方程(必修) 18 圆锥曲线与方程(选修1-1) 圆锥曲线与方程(选修2-1) 12 16 (必修)﹣18 (选修)+12 (选修)+16 直线、平面、简单几何体 9(A)(必修)直线、平面、简单几何体9(B)(必修) 36 36 立体几何初步(必修) 空间向量与立体几何(选修2-1) 18 12 (必修)﹣18 (选修)+12 不等式(必修) 22 不等式(必修) 不等式选讲(选修4 -5) 16 18 (必修)﹣6 (选修)+18 排列、组合、二项式定理(必修) 18 计数原理(选修2-3) 14 (必修)﹣18 (选修)+14 统计(选修I) 9 统计(必修) 统计案例(选修1-2) 16 14 (必修)+16 (选修)+5 概率(必修) 12 概率(必修) 8 (必修)﹣4 统计与概率(选修II) 14 统计与概率(选修2-3) 22 (选修)+8 研究性学习课题 (必修) 研究性学习课题 (选修I) 研究性学习课题 (选修II) 12 3 6 数学探究(是与必修课程和选修课程并列的课程内容,参见目录) 内容不单独设置,渗透在每个模

高中数学课程标准的课程目标

对立面
友谅
高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。  1. 获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。  2. 提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。  3. 提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。  4. 发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。  5. 提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。  6. 具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

高中数学课标课程的总目标是什么?

惨惮之疾
能立
高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。 1. 获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。 2. 提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。 3. 提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4. 发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5. 提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6. 具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。