欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

关于物理学专业考研

玉蒲团
胡广
我以前在读应用物理学,其实这个专业学的东西理论性强,没有太多的实用性.关于考研:考本专业肯定比跨专业要简单.如果你自认为自己有很强的实力(英语)的话,跨专业考研也不太难.建议:跨专业的话,尽量选靠近物理方面,而且比较热门的方面.比如:半导体物理,材料,机械,电气.选哪种两种学科结合,估计以后也会很热门.要努力啊!

怎么才能考上物理学的研究生?考研究生要哪些要求?

录像带
不灯港
首先要做考研复习,复习高等数学,英语、政治和物理学知识,要做充分的准备才能考上。多看专业书籍,也可以提前联系一下心仪学校的老师,获取最新信息,都有助于成功考上物理学研究生。考研究生要求如下:一、硕士研究生报考条件 (一)符合下列条件的,可以报名参加国家组织的全国统一招生考试: 1、拥护中国共产党的领导,愿为社会主义现代化建设服务,品德良好,遵纪守法;? 2、考生的学历必须符合下列条件之一: (1)国家承认学历的应届往届本科毕业生,近年部分学校需要有学位证; (2)具有国家承认的大学本科毕业学历的人员; (3)获得国家承认的大专毕业学历后经两年或两年以上(从大专毕业到录取为硕士生当年9月1日,下同),达到与大学本科毕业生同等学历,且符合招生单位根据本单位的培养目标对考生提出的具体业务要求的人员; 国家承认学历的本科结业生和成人高校应届本科毕业生,按本科毕业同等学力身份报考; (4)已获硕士学位或博士学位的人员,可以再次报考硕士生,但只能报考委托培养或自筹经费的硕士生; 3、年龄一般不超过40周岁,报考委托培养和自筹经费的考生年龄不限; 4、身体健康状况符合招生单位规定的体检要求。 二、考研的程序 考研是一件关系到大学生前程的事情,很多同学考虑得也越来越早了,从大三下学期开始准备是很普通的,一些人甚至从大一大二就开始考虑这个问题。确实对于这个大的问题,是否做,如何做,多花些调时间来考虑是必要的。在开始考虑这个问题时,你首先要知道的是考研的整个流程,它要经过哪些阶段,在什么时间要做什么事情,这些都要心中有数,以便及早安排,计划周详。根据我的理解,考研大致要经过以下过程。 (一)与学校联系,确定具体的学校、专业,获得具体的考试信息 如果确定了要考研,确定了要报考的大致学校和专业范围后,要和学校联系,获得最新的招生信息,并最后确定下报考的学校和专业。这种获得有关专业方面信息的途径有以下几个: 1、招生简章。一般在7-8月份出,由各个学校的研究生招生主管部门(研究生院和研究生处)公布。上面会列出:招生单位名称、代码、通讯地址、邮政编码、联系电话;招生的专业人数(有的以系、所、院、中心等整个具体招生单位为单位,有的具体到每一个专业);导师(有的不刊登,多属于集体培养);有的还会列出委培、自费等人数,但保送、保留学籍的名额一般不列出来(但这对于考生确实是非常关键的信息);考试科目;使用的参考书(很多学校也不列出,即使列出,经常列出的书目大多,或太少)。 因此可以看出,大部分招生单位的招生简章上的信息对于考生是远远不够的,这些可以说都是最基本的信息,而关键的信息,却没有列出。 2、系办印发的说明和专业课试题集。为了弥补招生简章的不足,应付考生不停地打电话询问一些有关信息,有的招生单位(一般都是具体的招生单位如系、院、所和中心等)特别公布一些说明,比如:历年报名人数、录取人数、录取比例、录取分数、参考书目等等,但保送人数、保留学籍人数仍无法公布,因为他们一般要到11月份研究生报名之前左右才能确定。 如果系里能公布最近几年的专业课试卷,那对于考生是莫大的福音了,要是没有看到以前的这些试题,复习准备无异是盲人摸象。但遗憾的是,公布试题的单位相比较还是很少的,如何能找到专业课试题,就看个人的本事了。不过现在有一些考研的网站收集了不少专业课试题,为考生提供了很大的方便。 3、导师。能和导师联系上,得到他的一两点指点,无疑会如虎添翼。但这并不容易,因为导师一般都很忙,即使联系上也要注意打交道的方式。还有一点很有意思,很多研究生反映,越是好的学校,和导师联系的必要性也越小。好的学校一般信息比较透明,黑箱操作比较少,出题也比较规范,很少有偏题、怪题。 4、在读研究生。和导师相比,在读研究生要好找一些,能提供的信息也要更“实用”,说的话更实在一些。因此,我建议,如果想考研,尽量找到研究生咨询,你绝对不会后悔。 5、各种平面媒体刊登的考研信息。 6、网站。如果能上网,现在有很多考研的网站,能提供很多信息。 (二)先期准备 获得了充分的专业课信息后,找到了完备的复习资料后,该踏实看书复习了。关于如何复习,每个人都有自己的方法,也有一些大家经过摸索共同认可的方法。至于具体如何复习,比如:何时开始复习,公共课如何复习,专业课如何复习,是否要上辅导班等等诸多问题,也许要分成若干文章分别予以论述,才能说得大概清楚。 (三)报名 报名时间一般在11月,这几年都是10-14号。在校生报名时由学校统一报名。在职人员报名一般在地市一级教委的高招办或者报考的学校,可以异地报名,即因为出差等原因在外地报名和参加考试。 报名时填报报考学校和专业时可以填两个:第一志愿,第二志愿。研究生考试的专业课试题是各个招生单位自己命题,你要按报第一志愿的试题来考试。 在职人员报考时经常遇到的两个问题是: 1、非常多的在职人员报名时单位不同意报考而不给开介绍信。他们很多在招你工作时就说明必须为单位服务N年,在此期间不得调动或者考研究生。 如果档案所在单位不同意开介绍信,如何解决是一个很让人费脑筋的事情。很多同学找了一个别的有熟人的单位开,有的人甚至到街上找刻公章的偷偷刻一个也报上名。但是这么做是有一定的风险的,因为初试通过后,学校要发函到档案所在单位调档案,这时候如果单位一生气不给,将很难办。而且学校一般都规定,凡是报考时出具介绍信的单位和档案所在单位不一致的话,将取消考生的录取资格。 2、另一个在职人员中很多人遇到的问题是同等学力问题,即大专生和大专生以下的考生如何报考的问题。按照规定,同等学力报考的考生在入校读研究生时必须有两年工作经历。比如一位大专学生2001年7月毕业,它可以在2003年9月人校读研究生,这样的话,他在2003年1月可以参加研究生入学考试,2002年11月就可以报名。他应该在此前很长时间,甚至一毕业就开始准备复习。 还有一个问题,很多学校对同等学力的考生还有一些另外的规定,比如要求有四级英语证书,或者要发表过相关领域的论文等等。考生在确定报考哪一个学校时,一定要事先看看最新的招生简章,以免白花功夫。 (四)初试 初试一般在1、2月份,春节前1、2个星期。考试要持续2天,进行4门考试,每门考试3个小时,也有进行两天半的考试专业。考试地点一般在地市一级教委高招办设立的考点,或者招生的高校,考生在报名时可以选择这两种考点。 (五)调剂 大约在寒假过后,春季开学后1、2周,专业课成绩差不多就出来了,可以打电话向系里和研招办询问。再过1、2周,公共课的成绩也出来了。这以后到发复试通知的一段时间是很关键的,如果名次不是特别理想,录取在两可之间,就要多和报考单位(系里)和导师多联系,实在不行看有无可能读自费和委培,或者调剂到别的学校。 (六)复试 复试一般在5.1前后,一般是等额面试,少数热门的专业会选择差额复试。对以同等学力资格报考的考生,学校一般还要书面测试本专业的核心课程。近两年国家还在较好的学校,比如清华、北大进行了复试时测试英语口语的试验。但一般而言,绝大部分学校都是等额面试,可以说非常轻松,主要是聊一些学习兴趣,读过哪些书,对哪些方面比较感兴趣,本科时老师都怎么教的等等,所问的专业知识也都是最基本的内容。对绝大多数学校来说,接到复试通知,只要你不是替考的,在复试时一问三不知,录取一般都没有问题。 (七)录取 复试通过后,学校将发函到你的档案所在单位,将你的档案调往学校,审查没有重大问题后(主要是政治性问题),将会发放录取通知书,将你所有的关系,包括组织、户口、工资关系,转往学校(委培培养除外)。

物理学考研有多少个专业?

第三波
  物理学考研有8个专业,具体为:070201 理论物理;070202 粒子物理与原子核物理;070203 原子与分子物理;070204 等离子体物理;070205 凝聚态物理;070206 声学;070207 光学;070208 无线电物理。  物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。它的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。

物理学考研考什么专业好?

邓莉
天地并与
1、物理学相关专业有:理论物理、粒子物理与原子核物理、凝聚态物理、声学、光学、无线电物理、应用物理学、光学工程、课程与教学论、学科教学(物理)等,当然也可以跨学科报考其他专业,除了医学、工学可能有限制外,其他专业都可以报考,关键是看自己的兴趣和基础。2、报考学校的选择方法是:一是根据将来就业的地点取向,个人生活习惯或偏好选具体地方,如北京、广州。毕竟在就读地发展会更好,有就读期间建立的人脉,同时找工作也更方便。二是根据备考情况和志向选层次,如重点还是一般大学。三是根据往年分数线选相对把握大一点的学校。

物理学(理科)跨工科考研究生有哪些考研方向

纬书
钢的舞
  物理学(理科)跨工科考研究生可以报考的方向有:   0801 力学  080101 一般力学与力学基础  080102 固体力学  080103 流体力学  080104 工程力学  0802 机械工程  080201 机械制造及其自动化  080202 机械电子工程  080203 机械设计及理论  080204 车辆工程  0803 光学工程  0804 仪器科学与技术  080401 精密仪器及机械  080402 测试计量技术及仪器  0805 材料科学与工程  080501 材料物理与化学  080502 材料学  080503 材料加工工程  0806 治金工程  080601 治金物理化学  080602 钢铁冶金  080603 有色金属治金  0807 动力工程及工程热物理  080701 工程热物理  080702 热能工程  080703 动力机械及工程  080704 流体机械及工程  080705 制冷及低温工程  080706 化工过程机械  0808 电气工程  080801 电机与电器  080802 电力系统及其自动化  080803 高电压与绝缘技术  080804 电力电子与电力传动  080805 电工理论与新技术  0809 电子科学与技术  080901 物理电子学  080902 电路与系统  080903 微电子学与固体电子学  080904 电磁场与微波技术  0810 信息与通信工程  081001 通信与信息系统  081002 信号与信息处理  0811 控制科学与工程  081101 控制理论与控制工程  081102 检测技术与自动化装置  081103 系统工程  081104 模式识别与智能系统  081105 导航、制导与控制  0812 计算机科学与技术  081201 计算机系统结构  081202 计算机软件与理论  081203 计算机应用技术  0813 建筑学  081301 建筑历史与理论  081302 建筑设计及其理论  081304 建筑技术科学  0814 土木工程  081401 岩土工程  081402 结构工程  081403 市政工程  081404 供热、供燃气、通风及空调工程  081405 防灾减灾工程及防护工程  081406 桥梁与隧道工程  0815 水利工程  081501 水文学及水资源  081502 水力学及河流动力学  081503 水工结构工程  081504 水利水电工程  081505 港口、海岸及近海工程  0816 测绘科学与技术  081601 大地测量学与测量工程  081602 摄影测量与遥感  081603 地图制图学与地理信息工程  0817 化学工程与技术  081701 化学工程  081702 化学工艺  081703 生物化工  081704 应用化学  081705 工业催化  0818 地质资源与地质工程  081801 矿产普查与勘探  081802 地球探测与信息技术  081803 地质工程  0819 矿业工程  081901 采矿工程  081902 矿物加工工程  081903 安全技术及工程  0820 石油与天然气工程  082001 油气井工程  082002 油气田开发工程  082003 油气储运工程  0821 纺织科学与工程  082101 纺织工程  082102 纺织材料与纺织品设计  082103 纺织化学与染整工程  082104 服装设计与工程  0822 轻工技术与工程  082201 制浆造纸工程  082202 制糖工程  082203 发酵工程  082204 皮革化学与工程  0823 交通运输工程  082301 道路与铁道工程  082302 交通信息工程及控制  082303 交通运输规划与管理  082304 载运工具运用工程  0824 船舶与海洋工程  082401 船舶与海洋结构物设计制造  082402 轮机工程  082403 水声工程  0825 航空宇航科学与技术  082501 飞行器设计  082502 航空宇航推进理论与工程  082503 航空宇航制造工程  082504 人机与环境工程  0826 兵器科学与技术  082601 武器系统与运用工程  082602 兵器发射理论与技术  082603 火炮、自动武器与弹药工程  082604 军事化学与烟火技术  0827 核科学与技术  082701 核能科学与工程  082702 核燃料循环与材料  082703 核技术及应用  082704 辐射防护及环境保护  0828 农业工程  082801 农业机械化工程  082802 农业水土工程  082803 农业生物环境与能源工程  082804 农业电气化与自动化  0829 林业工程  082901 森林工程  082902 木材科学与技术  082903 林产化学加工工程  0830 环境科学与工程  083001 环境科学  083002 环境工程  0831 生物医学工程  0832 食品科学与工程  083201 食品科学  083202 粮食、油脂及植物蛋白工程  083203 农产品加工及贮藏工程  083204 水产品加工及贮藏工程  0833 城乡规划学  0834 风景园林学  0835 软件工程  0836 生物工程  0837 安全科学与工程  0838 公安技术  0851 建筑学 ★  0852 工程 ★  085201 机械工程  085202 光学工程  085203 仪器仪表工程  085204 材料工程  085205 冶金工程  085206 动力工程  085207 电气工程  085208 电子与通信工程  085209 集成电路工程  085210 控制工程  085211 计算机技术  085212 软件工程  085213 建筑与土木工程  085214 水利工程  085215 测绘工程  085216 化学工程  085217 地质工程  085218 矿业工程  085219 石油与天然气工程  085220 纺织工程  085221 轻工技术与工程  085222 交通运输工程  085223 船舶与海洋工程  085224 安全工程  085225 兵器工程  085226 核能与核技术工程  085227 农业工程  085228 林业工程  085229 环境工程  085230 生物医学工程  085231 食品工程  085232 航空工程  085233 航天工程  085234 车辆工程  085235 制药工程  085236 工业工程  085237 工业设计工程  085238 生物工程  085239 项目管理  085240 物流工程  0853 城市规划 ★  0870 科学技术史  0871 管理科学与工程  0872 设计学

物理学专业考什么研究生比较有前途?

美丽城
莫为则虚
建议你考工科的,就是考研专业课考数学的,理科除非你继续再往上考,因为我就是本科师范物理,考的研究生,我们班的都是物理,要么你就继续上师范研究生(都是师范,老师好说),要么就上中科院之类的物理色彩特别浓的专业(继续深造),要么就上工科(前途好)……

物理学专业考研容易吗?

廷无忠臣
纱织
你要先建立自信! 自己有自信学好 考上机会就很大了你努力勤奋好学 你老师肯教就没有困难了 什么科目都一样 不一样的是自己

物理类专业考研后做什么工作

理禀
导演梦
物理所硕士招生专业及研究方向理论物理 主要研究方向 1、高温超导体机理、BEC理论及自旋电子学相关理论研究。2、凝聚态理论;3、原子分子物理、量子光学和量子信息理论;4、统计物理和数学物理。5、凝聚态物理理论、计算材料、纳米物理理论6、自旋电子学,Kondo效应。7、凝聚态理论、第一原理计算、材料物性的大规模量子模拟。8、玻色-爱因斯坦凝聚, 分子磁体, 表面物理,量子混沌。 凝聚态物理 主要研究方向 1、非常规超导电性机理,混合态特性和磁通动力学。(1)高温超导体输运性质,超导对称性和基态特性研究。(2)超导体单电子隧道谱和Andreev反射研究。(3)新型Mott绝缘体金属-绝缘基态相变和可能超导电性探索。(4)超导体磁通动力学和涡旋态相图研究。(5)新型超导体的合成方法、晶体结构和超导电性研究。2、高温超导体电子态和异质结物理性质研究(1)高温超导体和相关氧化物功能材料薄膜和异质结的生长的研究。(2)铁电体极化场对高温超导体输运性质和超导电性的影响的研究。(3)高温超导体和超大磁电阻材料异质结界面自旋极化电子隧道效应的研究。(4)强关联电子体系远红外物性的研究。3、新型超导材料和机制探索(1)铜氧化合物超导机理的实验研究(2)探索电子—激子相互作用超导体的可能性(3)高温超导单晶的红外浮区法制备与物理性质研究4、氧化物超导和新型功能薄膜的物理及应用研究(1)超导/介电异质薄膜的制备及物性应用研究(2)超导及氧化物薄膜生长和实时RHEED观察(3)超导量子器件的研究和应用(4)用于超导微波器件的大面积超导薄膜的研制5、超导体微波电动力学性质,超导微波器件及应用。6、原子尺度上表面纳米结构的形成机理及其输运性质(1)表面生长的动力学理论;(2)表面吸附小系统(生物分子,水和金属团簇)原子和电子结构的第一性原理计算;(3)低维体系的电子结构和量子输运特性 (如自旋调控、新型量子尺寸效应等)。.7、III-V族化合物半导体材料及其低维量子结构制备和新型器件探索(1)宽禁带化合物(In/Ga/AlN,ZnMgO)半导体及其低维量子结构生长、物性、微结构以及相互关系的研究,宽禁带化合物半导体新型微电子、光电子器件探索;(2)砷化镓基、磷化铟基新型低维异质结材料的设计、生长、物性研究及其新型微电子/光电子器件探索;(3)SiGe/Si应变层异质结材料的制备及物性研究。8、新颖能源和电子材料薄膜生长、物性和器件物理(1)纳米太阳能转换材料制备和器件研制;(2)纳米金刚石薄膜、碳氮纳米管/硼碳氮纳米管的CVD、PVD制备和场发射及发光性质研究;(3)负电亲和势材料的探索与应用研究;(4)纳米硅基发光材料的制备与物性研究;(5)有序氧化物薄膜制备和催化性质。9、低维纳米结构的控制生长与量子效应(1)极低温强磁场双探针扫描隧道显微学和自旋极化扫描隧道显微学;(2)半导体/金属量子点/线的外延生长和原子尺度控制;(3)低维纳米结构的输运和量子效应;(4)半导体自旋电子学和量子计算;(5)生物、有机分子自组装现象、单分子化学反应和纳米催化。10、生物分子界面、激发态及动力学过程的理论研究(1)生物分子体系内部以及生物分子-固体界面(主要包括氧化物表面、模拟的细胞表面和离子通道结构)的相互作用的第一原理计算和经典分子动力学模拟;(2)界面的几何结构、电子结构、输运性质及对生物特性的影响;(3)纳米结构的低能激发态、光吸收谱、电子的激发、驰豫和输运过程的研究,电子-原子间的能量转换和耗散以及飞秒到皮秒时段的含时动力学过程的研究。11、表面和界面物理(1)表面原子结构、电子结构和表面振动;(2)表面原子过程和界面形成过程;(3)表面重构和相变;(4)表面吸附和脱附;(5)表面科学研究的新方法/技术探索。12、自旋电子学;13、磁性纳米结构研究;14、新型稀土磁性功能材料的结构与物性研究;15、磁性氧化物的结构与物性研究;16、磁性物质中的超精细相互作用;17、凝聚态物质中结构与动态的中子散射研究;18、智能磁性材料和金属间化合物单晶的物性研究;19、分子磁性研究;20、磁性理论。21、纳米材料和介观物理研究内容:发展纳米碳管及其它一维纳米材料阵列体系的制备方法;模板生长和可控生长机理研究;界面结构,谱学分析和物性研究;纳米电子学材料的设计、制备,纳米电子学基本单元器件物理。22、无机材料的晶体结构,相变和结构-性能的关系研究内容:在材料相图相变研究的基础上,探索合成新型功能材料,为先进材料的合成和性能优化提供科学依据;在晶体结构测定的基础上,探讨材料结构-性能之间的内在联系,从晶体结构的微观角度阐明先进材料物理性质的机制,设计合成具有特定功能性结构单元的新型功能材料;发展和完善粉末衍射结构分析方法。23、电子显微学理论与显微学方法研究内容:电子晶体学图像处理理论和方法研究,微小晶体、准晶体的结构测定;系统发展表面电子衍射及成像的理论和实验方法,弹性与非弹性动力学电子衍射的一般理论,高能电子衍射的张量理论,动力学电子衍射数据的求逆方法。24、高分辨电子显微学在材料科学中的应用研究内容:利用高分辨、电子能量损失谱、电子全息等电子显微分析方法,研究金属/半导体纳米线的生长机制及结构与性能间的关系;复杂晶体结构中新型缺陷研究;结合其他物理方法,研究巨磁电阻、隧道结、半导体量子阱/点等薄膜材料的显微结构及其对物理性能的影响;低维材料界面势场的测量及与物理性能的相互关系;磁性材料中磁畴结构、各向异性场与波纹磁畴测定。25、强关联系统微观结构,电子相分离和轨道有序化研究研究内容:高温超导体的结构分析;强关联系统的电子条纹相和电子相分离研究;电荷有序化和JT效应;探索低温LORENTZ电子显微术,电子全息和EELS 在非常规电子态系统的应用。26、纳米晶及光电功能晶体生长;27、纳米离子学的材料、表征与器件;28、化学法制备纳米功能材料及其化学物理特性;29、纳米电子器件的构造与物性研究;30、纳米电子器件的集成与纳米电路特性的研究;31、强关联电子体系的低温物性研究;32、凝聚态物质中量子相干行为的研究;33、低维和纳米材料的电子态性质;34、非晶、纳米晶在极端条件下的物性;35、高压及相关过程的固体新材料研究;36、超导隧道结物理与技术。37、生物大分子的动力学研究 ;38、对颗粒物质的集团动力学性质的研究;39、溶体及固、液结构和性质的研究;40、对电流变液的机理研究和应用开发;41、利用声波波动方程进行的反问题的研究;42、软物质体系中的分子组装:研究两亲分子在固液界面的组装及其在材料和生命科学中的应用;43、单分子生物物理:用单分子微操纵技术研究染色质的组装、DNA与蛋白质的相互作用;44、结构生物学中的衍射相位问题;45、结构生物学实验分析方法;46、蛋白质折叠的成核理论和结构预测;47、蛋白质-蛋白质相互作用。48、THz远红外时域光谱和成象技术及其应用;49、量子结构制作与物理表征;50、功能薄膜材料制备、纳米人工结构的物性与器件。 光学 主要研究方向 1、光子晶体特性及其在光电器件中的应用;光镊在生物及物理中的应用;2、光子晶体的非线性光学效应;3、光子晶体、近场光学和衍射光学理论和实验研究。4、THz远红外时域光谱和成象技术及其应用;5、时间分辨超快激光光谱仪的研制;光合作用系统及人工模拟系统能量和电荷转移的超快光谱研究;蛋白质快速折叠动力学的实验研究;6、用激光法探索制备低维材料及其物性研究7、用激光分子束外延技术探索磁性/介电、磁性/铁电异质结;8、研究磁性/压电、铁电/压电等氧化物异质结及其相关物性;9、结合纳米无机/有机复合薄膜研制及其光电性质研究;10、探索能快速检测分子生物学DNA的光学与电学新方法,从事跨越物理学、医学与生物学的交叉课题研究;11、研究用于微波通信的铁电薄膜;12、用多体理论从头计算低维体系的物理特性;13、研究用光反射差发探测薄膜外延生长的动态过程;14、开发出不依赖高真空条件的外延薄膜制备的监测方法;15、采用激光脉冲沉积技术制备高性能的高温超导薄膜;16、研究第二类高温超导带材。17、原子相干;18、飞秒超快过程;19、强场物理;20、时间分辨超快激光光谱仪的研制;光合作用系统及人工模拟系统能量和电荷转移的超快光谱研究;21、蛋白质快速折叠动力学的实验研究。22、强场物理、超短超强激光物理、超快相互作用物理、强激光天体物理、X射线激光。23、产生超快超强激光脉冲的新原理及新技术研究;24、相对论强激光与等离子体相互作用中的高能密度物理,以及强场和超快物理。25、光学非线性过程;26、调谐激光;27、全固态激光的研究和应用。 该专业有博士生导师15名(其中中科院院士2名、工程院院士1名) 等离子体物理 主要研究方向 1、聚变等离子体;2、低温等离子体与材料表面相互作用 无线电物理 主要研究方向 1、电子学与科学仪器研制;2、根据科学研究的需要,以弱信号检测技术、计算机技术为基础,研制特殊的专用设备。

物理学考研有多少个专业?

有事
祈父
物理专业考研方向理论物理 主要研究方向 1、高温超导体机理、BEC理论及自旋电子学相关理论研究。2、凝聚态理论;3、原子分子物理、量子光学和量子信息理论;4、统计物理和数学物理。5、凝聚态物理理论、计算材料、纳米物理理论6、自旋电子学,Kondo效应。7、凝聚态理论、第一原理计算、材料物性的大规模量子模拟。8、玻色-爱因斯坦凝聚, 分子磁体, 表面物理,量子混沌。 凝聚态物理 主要研究方向 1、非常规超导电性机理,混合态特性和磁通动力学。(1)高温超导体输运性质,超导对称性和基态特性研究。(2)超导体单电子隧道谱和Andreev反射研究。(3)新型Mott绝缘体金属-绝缘基态相变和可能超导电性探索。(4)超导体磁通动力学和涡旋态相图研究。(5)新型超导体的合成方法、晶体结构和超导电性研究。2、高温超导体电子态和异质结物理性质研究(1)高温超导体和相关氧化物功能材料薄膜和异质结的生长的研究。(2)铁电体极化场对高温超导体输运性质和超导电性的影响的研究。(3)高温超导体和超大磁电阻材料异质结界面自旋极化电子隧道效应的研究。(4)强关联电子体系远红外物性的研究。3、新型超导材料和机制探索(1)铜氧化合物超导机理的实验研究(2)探索电子—激子相互作用超导体的可能性(3)高温超导单晶的红外浮区法制备与物理性质研究4、氧化物超导和新型功能薄膜的物理及应用研究(1)超导/介电异质薄膜的制备及物性应用研究(2)超导及氧化物薄膜生长和实时RHEED观察(3)超导量子器件的研究和应用(4)用于超导微波器件的大面积超导薄膜的研制5、超导体微波电动力学性质,超导微波器件及应用。6、原子尺度上表面纳米结构的形成机理及其输运性质(1)表面生长的动力学理论;(2)表面吸附小系统(生物分子,水和金属团簇)原子和电子结构的第一性原理计算;(3)低维体系的电子结构和量子输运特性 (如自旋调控、新型量子尺寸效应等)。.7、III-V族化合物半导体材料及其低维量子结构制备和新型器件探索(1)宽禁带化合物(In/Ga/AlN,ZnMgO)半导体及其低维量子结构生长、物性、微结构以及相互关系的研究,宽禁带化合物半导体新型微电子、光电子器件探索;(2)砷化镓基、磷化铟基新型低维异质结材料的设计、生长、物性研究及其新型微电子/光电子器件探索;(3)SiGe/Si应变层异质结材料的制备及物性研究。8、新颖能源和电子材料薄膜生长、物性和器件物理(1)纳米太阳能转换材料制备和器件研制;(2)纳米金刚石薄膜、碳氮纳米管/硼碳氮纳米管的CVD、PVD制备和场发射及发光性质研究;(3)负电亲和势材料的探索与应用研究;(4)纳米硅基发光材料的制备与物性研究;(5)有序氧化物薄膜制备和催化性质。9、低维纳米结构的控制生长与量子效应(1)极低温强磁场双探针扫描隧道显微学和自旋极化扫描隧道显微学;(2)半导体/金属量子点/线的外延生长和原子尺度控制;(3)低维纳米结构的输运和量子效应;(4)半导体自旋电子学和量子计算;(5)生物、有机分子自组装现象、单分子化学反应和纳米催化。10、生物分子界面、激发态及动力学过程的理论研究(1)生物分子体系内部以及生物分子-固体界面(主要包括氧化物表面、模拟的细胞表面和离子通道结构)的相互作用的第一原理计算和经典分子动力学模拟;(2)界面的几何结构、电子结构、输运性质及对生物特性的影响;(3)纳米结构的低能激发态、光吸收谱、电子的激发、驰豫和输运过程的研究,电子-原子间的能量转换和耗散以及飞秒到皮秒时段的含时动力学过程的研究。11、表面和界面物理(1)表面原子结构、电子结构和表面振动;(2)表面原子过程和界面形成过程;(3)表面重构和相变;(4)表面吸附和脱附;(5)表面科学研究的新方法/技术探索。12、自旋电子学;13、磁性纳米结构研究;14、新型稀土磁性功能材料的结构与物性研究;15、磁性氧化物的结构与物性研究;16、磁性物质中的超精细相互作用;17、凝聚态物质中结构与动态的中子散射研究;18、智能磁性材料和金属间化合物单晶的物性研究;19、分子磁性研究;20、磁性理论。21、纳米材料和介观物理研究内容:发展纳米碳管及其它一维纳米材料阵列体系的制备方法;模板生长和可控生长机理研究;界面结构,谱学分析和物性研究;纳米电子学材料的设计、制备,纳米电子学基本单元器件物理。22、无机材料的晶体结构,相变和结构-性能的关系研究内容:在材料相图相变研究的基础上,探索合成新型功能材料,为先进材料的合成和性能优化提供科学依据;在晶体结构测定的基础上,探讨材料结构-性能之间的内在联系,从晶体结构的微观角度阐明先进材料物理性质的机制,设计合成具有特定功能性结构单元的新型功能材料;发展和完善粉末衍射结构分析方法。23、电子显微学理论与显微学方法研究内容:电子晶体学图像处理理论和方法研究,微小晶体、准晶体的结构测定;系统发展表面电子衍射及成像的理论和实验方法,弹性与非弹性动力学电子衍射的一般理论,高能电子衍射的张量理论,动力学电子衍射数据的求逆方法。24、高分辨电子显微学在材料科学中的应用研究内容:利用高分辨、电子能量损失谱、电子全息等电子显微分析方法,研究金属/半导体纳米线的生长机制及结构与性能间的关系;复杂晶体结构中新型缺陷研究;结合其他物理方法,研究巨磁电阻、隧道结、半导体量子阱/点等薄膜材料的显微结构及其对物理性能的影响;低维材料界面势场的测量及与物理性能的相互关系;磁性材料中磁畴结构、各向异性场与波纹磁畴测定。25、强关联系统微观结构,电子相分离和轨道有序化研究研究内容:高温超导体的结构分析;强关联系统的电子条纹相和电子相分离研究;电荷有序化和JT效应;探索低温LORENTZ电子显微术,电子全息和EELS 在非常规电子态系统的应用。