欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

《统计研究》杂志社怎么样?

其自为也
水银人
《统计研究》杂志社是1996-12-05注册成立的全民所有制,注册地址位于北京市西城区月坛南街75号1栋910号房间。《统计研究》杂志社的统一社会信用代码/注册号是91110102102265157G,企业法人闾海琪,目前企业处于开业状态。《统计研究》杂志社的经营范围是:杂志出版;信息咨询服务。【经营范围中未取得专项许可的项目除外】(依法须经批准的项目,经相关部门批准后依批准的内容开展经营活动。)。通过爱企查查看《统计研究》杂志社信息和资讯。

统计研究的选题范围

借黑钱
解心释神
《统计研究》的选题范围有:统计学基本理论研究,政府统计的改革与发展,统计方法和技术的创新与应用,经济社会领域的统计实证分析,国民经济核算体系研究,统计史学研究等。 《统计研究》定期刊登国家统计局资深专家撰写的有关经济形势分析、国际经济比较及经济社会各领域专题分析的文章,历来受到社会各届的关注。自2008年起,《统计研究》将扩版至7印张112页。扩版后的《统计研究》将能够刊出更多优秀作品以满足广大读者和作者日益增长的需求。

统计研究的基本方法有哪些

天气不合
鰋鲤
统计学的基本研究方法有5种。大量观察法这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异,但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。统计学的各种调查方法都属于大量观察法。统计分组法由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显著性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。综合指标法统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。统计模型法在以统计指标来反映所研究现象的数量特征的同时,我们还经常需要对相关现象之间的数量变动关系进行定量研究,以了解某一(些)现象数量变动与另一(些)现象数量变动之间的关系及变动的影响程度。在研究这种数量变动关系时,需要根据具体的研究对象和一定的假定条件,用合适的数学方程来进行模拟,这种方法就叫做统计模型法。统计推断法在统计认识活动中,我们所观察的往往只是所研究现象总体中的一部分单位,掌握的只是具有随机性的样本观察数据,而认识总体数量特征是统计研究的目的,这就需要我们根据概率论和样本分布理论,运用参数估计或假设检验的方法,由样本观测数据来推断总体数量特征。这种由样本来推断总体的方法就叫统计推断法。统计推断法已在统计研究的许多领域得到应用,除了最常见的总体指标推断外,统计模型参数的估计和检验、统计预测中原时间序列的估计和检验等,也都属于统计推断的范畴,都存在着误差和置信度的问题。在实践中这是一种有效又经济的方法,其应用范围很广泛,发展很快,统计推断法已成为现代统计学的基本方法。

统计研究的基本方法有哪几种?

大话王
修迪
统计学专业,数学三,英语 ,以及政治啊,这是初试,不过还有复试,要考综合性统计学,不过你首先还是把初试过了再说!只要你肯努力应该没问题,我相信你会的!至于数学是很重要的他是考研的核心,拿分的关键,所以你要去看下提纲 如下: 一、微积分 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数基本初等函数的性质及图形初等函数 数列极限与函数极限的概念 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较极限 四则运算 两个重要极限 函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法。深入了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数、反函数、隐函数和分段函数的概念。 4。掌握基本初等函数的性质及其图形,理解初等函数的概念。 5.会建立简单应用问题中的函数关系式。 6.了解数列极限和函数极限(包括左、右极限)的概念。 7.了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法。了解无穷大的概念及其与无穷小的关系。 8.了解极限的性质与极限存在的两个准则(单调有界数列有极限、夹*定理),掌握极限四则运算法则,会应用两个重要极限。 9.理解函数连续性的概念(含左连续与右连续)。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用。 二、一元函数微分学 考试内容 导数的概念 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'HoSpital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 考试要求 1。理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法以及对数求导法。 3.了解高阶导数的概念,会求二阶、三阶导数及较简单函数的N阶导数。 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性:掌握微分法。 5.理解罗尔(ROl1e)定理、拉格朗日(kgrange)中值定理、柯西(oluchy)中值定理的条件和结论,掌握这三个定理的简单应用。 6.会用洛必达法则求极限。 7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题)。 8.掌握曲线凹凸性和拐点的判别方法,以及曲线的渐近线的求法。 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形 三、一元函数积分学 考试内容 原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元 积分法和分部积分法 定积分的概念和基本性质 积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton一Leibniz)公式 定积分的换元 积分法和分部积分法广义积分的概念和计算定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握计算不定积分的换元积分法和分部积分法。 2.了解定积分的概念和基本性质。掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法。会求变上限定积分的导数。 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用题。 4.了解广义积分收敛与发散的概念,掌握计算广义积分的基本方法,了解广义积分的收敛与发散的条件。 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质(最大值和最小值定理)偏导数的概念与计算多元复合函数的求导法 隐函数求导法 高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的表示法与几何意义 2.了解二元函数的极限与连续的直观意义。 3.了解多元函数偏导数与全微分的概念,掌握求复合函数偏导数和全微分的方法,会用隐函数的求导法则。 4.了解多元函数极值和条件极值的概念/掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值。会用拉格朗日乘数法求条件极值。会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。会计算无界区域上的较简单的二重积分。 五、无穷级数 考试内容 常数项级数收敛与发散的概念 收敛级数的和的概念级数的基本性质与收敛的必要条件 几何级数与户级数的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数莱布尼茨定理幂级数的概念 收敛半径、收敛区问(指开区间)和收敛域幂级数的和函数幂级数在收敛区间内的基本性质简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和等概念。 2.掌握级数收敛的必要条件及收敛级数的基本性质。掌握几何级数及P 级数的收敛与发散的条件。掌握正项级数的比较判别法和达朗贝尔(比值)判别法。 3.了解任意项级数绝对收敛与条件收敛的概念,掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛的判别方法。 4.会求幂级数的收敛半径和收敛域。 5.了解幂级数在收敛区问内的基本性质(和函数的连续性、逐项微分和逐项积分),会求一些简单幂级数的和函数。 6·掌握(略)等幂级数展开式,并会利用这些展开式将一些简单函数间接展成幂级数。 六、常微分方程与羡分方程 考试内容 微分方程的概念 微分方程的解、通解、初始条件和特解变量 可分离的微分方程 齐次方程一阶线性方程 二阶常系数齐次线性方程及简单的非齐次线性方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用 考试要求 1.了解微分方程的阶、通解、初始条件和特解等概念。 2.掌握变量可分离的方程、齐次方程和一阶线性方程的求解方法。 3.会解二阶常系数齐次线性方程和自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程。 4.了解差分与差分方程及其通解与特解等概念。 5.掌握一阶常系数线性差分方程的求解方法。 6.会应用微分方程和差分方程求解一些简单的经济应用问题。 二、线往代数 一、行列式 考试内容 行列式的概念和基本性质行列式按行(列)展开定理克莱姆(Crammer)法则 考试要求 1.理解门阶行列式的概念。 2.掌握行列式的性质,会应用行列式的性质和行列式按行(列)展开定理计算行列式。 3.会用克莱姆法则解线性方程组。

统计的研究对象及职能是什么?

陌路雪
彼岸花
统计学的研究对象是指统计研究所要认识的客体。一般来说,统计学的研究对象是客观现象总体的数量特征和数量关系,以及通过这些数量方面反映出来的客观现象发展变化的规律性。统计具有的三大职能:信息职能、咨询职能、监督职能。是相互作用、相互促进、相辅相成和密切联系的。信息职能是统计最基本的职能,是保证咨询和监督职能得以有效发挥的前提。

什么是统计调查?它在整个统计研究中占有什么地位

虞梅
两条线
  请参照《统计学》教材的第 20 和 21 页。  答案:  所谓统计调查,就是搜集统计资料,即根据一定目的、要求和任务,运用各种科学的调查方法,有计划、有组织地搜集有关现象的各个单位的资料,对客观事实进行登记,取得真实可靠的统计资料的工作过程。  统计调查在统计中的地位:统计调查在统计工作的整个过程中,是基础环节,担负着提供基础资料的任务,所有的统计计算和统计研究,都是在原始资料搜集的基础上建立起来的。统计调查是统计工作的基础,是统计整理,统计分析的前提。

统计研究中最基本的单位是?

白波若山
流浪犬
统计分组是统计研究中最基本的方法 摘要: 统计分组就是根据统计研究的任务和社会经济现象的本质特征,将所研究的社会现象,按照一定的...

在统计研究中什么时候会出现样本量大于总体量的情况?

李达
芒乎何之
放回多次取样的时候,如对100个灯泡进行质量检查,步骤是取一个观察是否坏的,然后放回去重新取下一个,这样的话, 你可以考虑取1000次。。这个时候会大于总体总体分为“目标总体”和“抽样总体”,定义如下: 目标总体:也可简称为总体 ,是指所要研究对象的全体,或者是希望从中获取信息的总体,它由研究对象中所有性质相同的个体所组成组成总体的个体称作总体单元或单位。 抽样总体:是指从中抽取样本的总体。通常所说总体规模即指抽样总体规模。 而“样本量”即“样本容量”定义如下 样本容量:从抽样总体N中抽取n个抽样单元构成一个样本,n是一个事先人为确定的不大于N、不小于1的正整数,称为样本容量。 以个体商业调查为例,目标总体是北京市个体商业经营单位,抽样总体则可以有不同的选择,选择之一是营业执照,即把北京市工商局个体商业的营业执照记录作为抽样总体,从中抽取样本。可是,有些人虽然持有营业执照,但早已不从事商品交易活动,他们已不属于目标总体范围,却出现在抽样总体当中;还有一些人无照经营,他们应该属于目标总体范围,却没有出现在抽样总体之中。 持有且从事(A)+从事但不持有(B)=目标总体(N1) 持有且从事(A)+持有但不从事(C)=抽样总体(N2) 样本量n始终小于抽样总体N2,即1<=n<=N2, 当抽样总体大于目标总体时,即N1<N2时,n是可能大于N1,即样本量大于目标总体量。 总结即样本量永远不大于抽样总体规模(抽样总体量),但可能大于目标总体规模(目标总体量),由于通常总体规模指的是抽样总体规模表,用N表示,样本量用n表示,而n<=N,所以通常说样本量小于总体量。 当总体量定义变化时关系也就会产生变化,出现混乱。为了避免这样的混乱,之前应该对相关名词做好准确定义。本回答被网友采纳

统计研究的基本方法有哪几种?

此下德也
在桥下
1.大量观察法大量观察法就是对总体中全部或足够多的总体单位进行调查研究并综合分析的方法。统计的研究对象是客观现象总体的数量方面本回答被网友采纳详情官方电话官方服务官方网站