欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

统计学考研要考什么

梅耶林
空白
统计学考研科目:①101思想政治理论②201英语一或202俄语或203日语③303数学三④806宏、微观经济学。(注:专业课各大院校的考试科目有所不同,需以报考院校为准)。

统计学考研科目

泰伯
礼仪
1、统计学专业考研科目(各个招生单位考试科目略有不同,以厦门大学为例):(1)101思想政治理论;(2)201英语一或202俄语或203日语;(3)303数学三;(4)806宏、微观经济学。2、考研不一定要过英语六级:考研对英语六级没有硬性规定。不要求一定要过六级。根据全国硕士研究生招生简章规定,考研只需大学本科或同等学历即可,对六级成绩没有硬性规定。当然,部分知名院校或部分专业对报考的学生英语成绩有一定要求,考生要得到权威的回复,最好直接查看报考院校最新的硕士生招生简章和招生专业目录。扩展资料:考研英语和六级英语的区别1、六级考试侧重听力,考研英语侧重阅读:六级考试听力所占比重能到35%,一般听力在六级备考中是绝不能放松的主线。但是考研则不然,它主要侧重对阅读的考察。2、出题机构不同,难度系数存在差异:(1)考研英语和六级英语四六级是两种不同类型的考试,前者由教育部考试中心精心准备出题,题目包括听力、阅读、写作、翻译。后者由大学英语四六级考试委员会出题,题目包括英语知识运用、阅读理解和写作。两个部门在出题风格上存在很明显的差异。(2)大学英语六级的考试时间十分紧凑,它的难度主要体现在考试对速度的分配和掌控上,只有具备快速锁定考点信息的能力,考生才能拿到高分;考研英语考试时间没有四六级紧,但是阅读的长难句非常多,对考生的逻辑思维和对词汇的深层理解提出来相当水平的要求。3、六级以测试为宗旨,考研则是优胜劣汰:(1)六级英语主要是培养大学生通过英语这个语言媒介,来获取平时生活及专业内所需要的信息,其宗旨是希望学生都能通过英语测试。六级英语用考试的方式测验大学生的实际英语水平,考查他们在整个大学期间的英语学习成果,从而进一步有目的地提高。由此可见,大学六级考试主要是考察学生的英语运用能力,最终的目的是为了是水平和速度的提升。(2)而考研英语,是一项选拔性考试,具有淘汰性,应试性更强,对同学们的答题技巧有一定的要求。考研英语中会将词汇贯彻于整个考试内容中,没有独立的词汇题型,但是在综合运用词汇能力方面却有了更高标准的要求。参考资料来源:百度百科 - 考研参考资料来源:百度百科 - 大学英语六级考试

统计学考研初试都要考哪些科目?

力牧
是谓谢施
统计学考研初试科目研究方向:01数理统计02生物统计03生存分析04金融统计05风险管理与精算06应用统计07应用概率初试科目:①101思想政治理论②201英语一③653数学分析④873线性代数

跨专业考研考统计学需要考哪些科目啊。

红河劫
芬兰版
1、金融学跨考经济类的统计学应该难度不大,毕竟有数学基础,也学过西方经济学、统计学。 2、按照招生学校的初试、复试科目学习就可以了。最好还是选定报考学校,这样既有动力,又可以按照学校指定参考书目来学习。选定学校之前可以先复习政治、英语和数学。 3、跨考统计的关键还是看报考什么学校,名校肯定竞争大一些。

统计学研究生要考哪几门课程?

国风
江汉声
我是学概率论与数理统计的当初考了数学分析,高等代数,解析几何,实变函数,近世代数加试考概率基础,和数理统计我觉得现在这个方向首推中科院然后是北大,中科大,复旦大学,厦门大学另外东北师范大学的统计也很好文科的统计我就不太清楚了

考上中国人民大学的统计学研究生要什么条件?

儿歌
成者为首
当然要考统计学专业,数学三,英语 ,以及政治啊,这是初试,不过还有复试,要考综合性统计学,不过你首先还是把初试过了再说!只要你肯努力应该没问题,我相信你会的!至于数学是很重要的他是考研的核心,拿分的关键,所以你要去看下提纲如下:一、微积分 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数基本初等函数的性质及图形初等函数 数列极限与函数极限的概念 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较极限 四则运算 两个重要极限 函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法。深入了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数、反函数、隐函数和分段函数的概念。 4。掌握基本初等函数的性质及其图形,理解初等函数的概念。 5.会建立简单应用问题中的函数关系式。 6.了解数列极限和函数极限(包括左、右极限)的概念。 7.了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法。了解无穷大的概念及其与无穷小的关系。 8.了解极限的性质与极限存在的两个准则(单调有界数列有极限、夹*定理),掌握极限四则运算法则,会应用两个重要极限。 9.理解函数连续性的概念(含左连续与右连续)。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用。 二、一元函数微分学 考试内容 导数的概念 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'HoSpital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 考试要求 1。理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法以及对数求导法。 3.了解高阶导数的概念,会求二阶、三阶导数及较简单函数的N阶导数。 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性:掌握微分法。 5.理解罗尔(ROl1e)定理、拉格朗日(kgrange)中值定理、柯西(oluchy)中值定理的条件和结论,掌握这三个定理的简单应用。 6.会用洛必达法则求极限。 7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题)。 8.掌握曲线凹凸性和拐点的判别方法,以及曲线的渐近线的求法。 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形 三、一元函数积分学 考试内容 原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元 积分法和分部积分法 定积分的概念和基本性质 积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton一Leibniz)公式 定积分的换元 积分法和分部积分法广义积分的概念和计算定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握计算不定积分的换元积分法和分部积分法。 2.了解定积分的概念和基本性质。掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法。会求变上限定积分的导数。 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用题。 4.了解广义积分收敛与发散的概念,掌握计算广义积分的基本方法,了解广义积分的收敛与发散的条件。 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质(最大值和最小值定理)偏导数的概念与计算多元复合函数的求导法 隐函数求导法 高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的表示法与几何意义 2.了解二元函数的极限与连续的直观意义。 3.了解多元函数偏导数与全微分的概念,掌握求复合函数偏导数和全微分的方法,会用隐函数的求导法则。 4.了解多元函数极值和条件极值的概念/掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值。会用拉格朗日乘数法求条件极值。会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。会计算无界区域上的较简单的二重积分。 五、无穷级数 考试内容 常数项级数收敛与发散的概念 收敛级数的和的概念级数的基本性质与收敛的必要条件 几何级数与户级数的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数莱布尼茨定理幂级数的概念 收敛半径、收敛区问(指开区间)和收敛域幂级数的和函数幂级数在收敛区间内的基本性质简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和等概念。 2.掌握级数收敛的必要条件及收敛级数的基本性质。掌握几何级数及P 级数的收敛与发散的条件。掌握正项级数的比较判别法和达朗贝尔(比值)判别法。 3.了解任意项级数绝对收敛与条件收敛的概念,掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛的判别方法。 4.会求幂级数的收敛半径和收敛域。 5.了解幂级数在收敛区问内的基本性质(和函数的连续性、逐项微分和逐项积分),会求一些简单幂级数的和函数。 6·掌握(略)等幂级数展开式,并会利用这些展开式将一些简单函数间接展成幂级数。 六、常微分方程与羡分方程 考试内容 微分方程的概念 微分方程的解、通解、初始条件和特解变量 可分离的微分方程 齐次方程一阶线性方程 二阶常系数齐次线性方程及简单的非齐次线性方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用 考试要求 1.了解微分方程的阶、通解、初始条件和特解等概念。 2.掌握变量可分离的方程、齐次方程和一阶线性方程的求解方法。 3.会解二阶常系数齐次线性方程和自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程。 4.了解差分与差分方程及其通解与特解等概念。 5.掌握一阶常系数线性差分方程的求解方法。 6.会应用微分方程和差分方程求解一些简单的经济应用问题。 二、线往代数 一、行列式 考试内容 行列式的概念和基本性质行列式按行(列)展开定理克莱姆(Crammer)法则 考试要求 1.理解门阶行列式的概念。 2.掌握行列式的性质,会应用行列式的性质和行列式按行(列)展开定理计算行列式。 3.会用克莱姆法则解线性方程组。 二、矩阵 考试内容 矩阵的概念 单位矩阵、对角矩阵、数量矩阵、三角矩阵、对称矩阵和正交矩阵矩阵的和数与矩阵的积 矩阵与矩阵的积 矩阵的转置 逆矩阵的概念和性质 矩阵的伴随矩阵 矩阵的初等变换 初等矩阵 分块矩阵及其运算矩阵的秩 考试要求 1.理解矩阵的概念,了解几种特殊矩阵的定义和性质。 2.掌握矩阵的加法、数乘、乘法,以及它们的运算法则;掌握矩阵转置的性质;掌握方阵乘积的行列式的性质。 3.理解逆矩阵的概念、掌握逆矩阵的性质。会用伴随矩阵求矩阵的逆。 4.了解矩阵的初等变换和初等矩阵的概念;理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩。 5.了解分块矩阵的概念,掌握分块矩阵的运算法则。 三、向量 考试内容 向量的概念 向量的和数与向量的积 向量的线性组合与线性表示 向量组线性相关与线性元关的概念、性质和判别法 向量组的极大线性元关组 向量组的秩 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则。 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。 3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法。 4.理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩。 四、线性方程组 考试内容 线性方程组的解 线性方程组有解和元解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线住方程组的通解 考试要求 1.理解线性方程组解的概念,掌握线性方程组有解和无解的判定方法。 2.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。 3.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解。 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念 相似矩阵 矩阵的相似 对角矩阵 实对称矩阵的特征值和特征向量 考试要求 1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。 2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法。 3.掌握实对称矩阵的特征值和特征向量的性质。 六、二次型 考试内容 二次型及其矩阵表示 合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 正交变换二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型。 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念(了解惯性定理的条件和结论,会甩正交变换和配方法化二次型为标准形。正定二次型、正定矩阵的概念,掌握正定矩阵的性质。 三、概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间事件的关系 事件的运算及性质 事件的独立性完全事件组概率的定义概率的基本性质古典型概率条件概率““法公式乘法公式全概率公式和贝叶斯(Bayes)公式独立重复试验 考试要求 1.了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算。 2,理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率;掌握概率的加法、乘法公式以及全概率公式、贝叶斯公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。 二、随机变量及其概率分布 考试内容 随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 二维随机变量及其联合(概率)分布 二维离散型随机变量的联合概率分布和边缘分布 二维连续型随机变量的联合概率密度和边缘密度随机变量的独立性 常见二维随机变量的联合分布 随机变量函数的概率分布 两个连续型随机变量之和的概率分布 χ2分布 t分布 F分布 分位数的概念 考试要求 1.理解随机变量及其概率分布的概念;理解分布函数F(x)=P{X≤x}的概念及性质;会计算与随机变量有关的事件的概率。 2.理解离散型随机变量及其概率分布的概念,掌握0一1分布、二项分布、超JLnn分布、泊松(POison)分布及其应用。 3.理解连续型随机变量及其概率密度的概念,掌握概率密度与分布函数之间的关系;掌握均匀分布、指数分布正态分布及其应用 4.理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及其两种基本形式:离散型联合概率分布和边缘分布、连续型联合概率密度和边缘密度;会利用二维概率分布求有关事件的概率。 5.理解随机变量的独立性及不相关性的概念,掌握离散型和连续型随机变量独立的条件。 6.掌握二维均匀分布;了解二维正态分布的密度函数,理解其中参数的概率意义。 7.掌握根据自变量的概率分布求其较简单函数的概率分布的基本方法;会求两个随机变量之和的概率分布;了解产生χ2变量、,变量和F变量的典型模式;理解标准正态分布:χ2 分布、T分布和F分布的分位数,会查相应的数值表。 三、随机变量的数字特征 考试内容 随机变量的数学期望、方差、标准差以及它们的基本性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 两个随机变量的协方差及其性质 两个随机变量的相关系数及其性质 考试要求 1.理解随机变量数字特征(期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计算具体分布的数字特征,掌握常用分布的数字特征。 2.会根据随机变量1的概率分布求其函数的数学期望Eg(X);会根据随机变量调和Y的联合概率分布求其函数g(x,Y)的数学期望Eg(x,y)。 3.掌握切比雪夫不等式。 四、大数定律和中心极限定理 考试内容 切比雪夫(Chebyhev)大数定律伯努利(Bemoulli)大数定律辛钦(Khinchine)大数定律泊松(Pojhon)定理 列莫弗一拉普拉斯定理(二项分布以正态分布为极限分布)列维一林德伯格定理(独立同分布的中心极限定理) 考试要求 1.了解切比雪夫、伯努利、辛钦大数定律成立的条件及结论,理解其直观意义。 2.掌握泊松定理的结论和应用条件,并会用泊松分布近似计算二项分布的概率。 3.掌握椽莫弗一拉普拉斯中心极限定理、列维一林德怕格中心极限定理的结论和应用条件,并会用相关定理近似计算有关随机事件的概率。 五、数理统计的基本概念 考试内容 总体个体简单随机样本统计量经验分布函数样本均值、样本方方差 样本矩 考试要求 理解总体、简单随机样本、统计量、样本均值与样本方差的概念;了解经验分布函数;掌握正态总体的抽样分布(标准正态分布、χ2分布、F分布、T分布 六、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 极大似然估计 估计量的评选 标准区间估计的概念 单个正态总体均值的区间估计 单个正态总体方查和标准差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1. 理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、最小方差性(有效性)和相合性(一致性)的概念,并会验正估计量的无偏性。 2.掌握矩估计法和极大似然估计法 3. 掌握单个正态总体的均值和方差的置信区间的求法 4. 掌握两个正态总体的均值差和方差比置信区见的求法 七、假设检验 考试内容 显著性检验的基本思想、基本步骤和可能产生的两类错误 单个和两个正态总体的均值差和方差的假设检验 考试要求 1。理解显著兴建研的基本思想,掌握假设检验的基本步骤了解假设检验可能产生的两类错误 2.了解单个和两个正态总体的均值和方差的假设检验。 试卷结构 (一)内容比例 微积分约50% 线性代数约25% 概率论与数理统计约25% (二)题型比例 填空题与选择题约30% 解答题(包括证明题)约70%

考研统计学的过来人请进。。。。

白影
我和你一样,本科学数学与应用数学,研究生上的统计学,我觉得你好像考中国人大的统计学,不知道是不是。这个专业还可以,现在就业的面也越来越宽,如果学校好的话,应该就业会更好的,就业多在银行、保险、移动等垄断行业,也有的考的国家统计局,除此之外去一些咨询公司的也有,现在咨询公司对数据分析的要求也越来越高。个人觉得,这个专业还是比纯经济学的或者纯管理类的东西学到的东西会多,有软件的学习,也有一些数学模型的学习,学的不会像经济或者管理那么空洞。备考的过程:我考的是数三,用的是陈文灯的书,模拟题用的是李永乐的,英语单词用的是星火的,背了大概三遍,阅读理解用的是石春祯的,难度与考试相似,政治报了一个任汝芬的班,班上直接就发书了,把书理解深刻了我觉得就差不多了。关于专业课,这个就不好说了,每个学校是不一样的,一定要把专业课拿下,150分怎么也要考差不多才能总体上线。希望对你有用,仅供参考。我自己觉得在经济学当中,这个还算是比较实用的一门学科。而且你是数学专业的,基础打的比较好,对以后学统计帮助比较大。 至于备考,还要看你考什么学校,每个学校的专业课考题难度不一样。那初试要加考统计学吗?还是说初试只需要全国统考就行了呢?追答专业课不是全国统考,每个学校自己出题,初试考的不一样,有的学校只考西经,有的考统计学。

我是统计学专业 考研的话 哪几门是必考科目 ?

明君不臣
地下情
不同学校是不一样的。2013年北京大学统计学考研只接受推免生。2012年北京大学统计学研究生考试科目:初试科目:本专业只接收推荐免试生。备注:光华管理学院招生总人数为515人。推荐免试生全部从暑期夏令营中选拔。招生总数中含金融硕士项目75人、工商管理硕士400人,除以上475人外,均按硕博连读方式招生培养。2012年复旦大学管理学院统计学研究生考试科目:研究方向: 01 商务统计。考试科目: ①101思想政治理论②201英语一③301数学一④860微观经济学。统计学考研211或者985招生院校:(10001)北京大学、(10002)中国人民大学、(10004)北京交通大学、(10005)北京工业大学、(10006)北京航空航天大学、(10007)北京理工大学、(10008)北京科技大学、(10022)北京林业大学、(10027)北京师范大学、(10052)中央民族大学、(10054)华北电力大学、(11413)中国矿业大学(北京)、(10055)南开大学、(10062)天津医科大学、(10080)河北工业大学、(10112)太原理工大学、(10140)辽宁大学、(10183)吉林大学、(10200)东北师范大学、(10225)东北林业大学、(10246)复旦大学、(10248)上海交通大学、(10269)华东师范大学、(10272)上海财经大学、(10280)上海大学、(90030)第二军医大学、(10285)苏州大学、(10286)东南大学、(10287)南京航空航天大学、(10288)南京理工大学、(10290)中国矿业大学、(10294)河海大学、(10295)江南大学、(10319)南京师范大学、(10335)浙江大学、(10357)安徽大学、(10358)中国科学技术大学、(10359)合肥工业大学、(10384)厦门大学、(10386)福州大学、(10403)南昌大学、(10422)山东大学、(10423)中国海洋大学、(10425)中国石油大学(华东)、(10459)郑州大学、(10486)武汉大学、(10487)华中科技大学、(10491)中国地质大学(武汉)、(10497)武汉理工大学、(10511)华中师范大学、(10520)中南财经政法大学、(10532)湖南大学、(10533)中南大学、(10542)湖南师范大学、(10558)中山大学、(10559)暨南大学、(10561)华南理工大学、(10574)华南师范大学、(10593)广西大学、(10611)重庆大学、(10635)西南大学、(10610)四川大学、(10613)西南交通大学、(10614)电子科技大学、(10651)西南财经大学、(10657)贵州大学、(10673)云南大学、(10697)西北大学、(10698)西安交通大学、(10699)西北工业大学、(10701)西安电子科技大学、(10710)长安大学、(10718)陕西师范大学、(90032)第四军医大学、(10730)兰州大学、(10759)石河子大学。

统计学专业考研用的数学是一二三那一本,考研科目有哪些?

此二子者
刽子手
统计学专业考研用的数学是一二三哪一本取决于报考的研究方向和院校。报考院校不同,要求考试的数学科目也不同。以中国人民大学为例,考试的数学科目为数学二。统计学是被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。随着数字化的进程不断加快,人们越来越多地希望能够从大量的数据中总结出一些经验规律从而为后面的决策提供一些依据。扩展资料:统计学专业毕业生需具备的知识和技能:1、掌握数学、物理的基础知识,具有较强的分析和演算能力。2、掌握系统的力学基本理论知识,初步掌握力学的基本实验技能和实验分析方法;掌握一定的工程背景知识,初步学会建立简单力学模型的方法。3、了解相近专业的一般原理和知识。4、对该专业范围内科学技术的新发展有所了解。参考资料来源:百度百科--统计学专业