欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

小学四年级数学探究题

宿命
花园
第一次相遇,客车和货车共行了1个全程,客车行了38.5千米第二次相遇,客车和货车共行了3个全程,客车行了38.5×3=115.5千米同时,客车行的还是1个全程多16.5千米,A、B两城的距离是38.5×3-16.5=99千米

小学四年级数学小论文

不可多取
猎天下
著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。”特别是二十一世纪的今天,数学的应用更是无所不在。那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合新一代的学生呢?我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿。那么,数学活动课就是让我们充分体现自主学习的一种教学方式。活动课上,在老师的指导下,我们分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,即培养了我们的动手能力,又提高了我们的思维能力,而且让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积得计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,有的同学发现可以用剪刀沿着平行四边形的高,把它剪成一个直角三角形和一个直角梯形,然后可以把它们拼成一个长方形;一些同学又发现还可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底边”和“高”。由此,大家终于自己找到了平行四边形面积公式为:S=ah。再比如,上《有余数的除法》这节课时,老师采用让同学们玩扑克牌的游戏,使大家很快理解和掌握了有余数的除法的计算规律,让大家在轻松愉快的活动中学到知识。我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。……从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。做了这道题,我知道做数奥不能求快,要求懂它的方法。总之,我认为用活动课的方式上数学课,是我们小学生非常喜欢的。在课堂上,每个同学对知识的探索过程充满了好奇心,都迫切渴望通过自己的实验活动,去找到解决问题的方法。学习中,我们充分体验套了做学习的主人的快乐和自豪。希望老师们能多用活动课的方式来上数学课。这样,我们将会学的更扎实、更轻松、更灵活、更优秀。

数学小论文四年级

太空侠
有亲
在四年级的奥数课上,有一个学习专题是“年龄问题”。课后老师出了一道思考题给我们,我苦思冥想了好久,都没有解出答案。我又仔细地研究了有关“年龄问题”和“逆推问题”的解题思路,终于茅塞顿开,有了答案。题目是这样的:三个兄弟分别收到了奶奶给他们寄来的苹果。每人收到的苹果个数是他们三年前的岁数。三弟是个聪明的孩子,他向两个哥哥提出了一个交换苹果的建议:他说:“我只要留一半苹果,还有一半送给你们对方;然后要二哥也留一半,把另一半让我和大哥平分;最后也要大哥留下一半,把另一半让我和二哥平分。”两个哥哥没有怀疑这建议有什么不妥当的地方,都同意三弟的要求。结果大家的苹果数都变成相等了,每人各分到8只苹果。问:三兄弟每个人的年龄是多少岁?我的解题思路是这样的,从最终的结果向前推断,即:最终的交换结果是每人得到了8个苹果,所以大哥在分出自己的苹果前是16只苹果,而二哥和三弟各有4只苹果。二哥在分出自己的苹果前有8只苹果,大哥有14只苹果,三弟有2只苹果。由此可知,三弟在分出苹果前有4只苹果,二哥有7只苹果,大哥有13只苹果。最后一定要注意题目中“每人收到的苹果个数是他们三年前的岁数”这句话,再分别加上3,所以现在三弟是7岁,二哥是10岁,大哥是16岁。怎么样,数学中的趣味还是很多的吧!

数学研究报告怎么写四年级

兰梅记
漫画家
。。。没办法。。我也不会啊~~

小学四年级的数学论文怎么写

其书五车
九个吻
数学家庭中的一对孪生兄弟――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。真诚的希望大家用发现美的眼睛,去发现数学!感受数学

小学四年级数学小论文如何写

力黑
不怕死
基本结构是,开篇现总说一下背景,然后提出对某一个地方的观点,然后论证该观点,最后结论什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科。各门科学的“数学化”,是现代科学发展的一大趋势

四年级数学小论文怎么写

夫子顺也
宗也
今天,数学竞赛成绩揭晓了,平时总屈居二三名的我竞考了98分。我得到这个消息后,高兴地想:“哈哈,这下第一名非我莫属了!对了,把这个消息告诉妈妈,让她也高兴高兴!”于是,我怀着喜悦的心情,迈着轻快的步子来到了家,把这个好消息告诉了妈妈。妈妈起先夸奖了我几句,谁知突然语调一转,对我说:“你可别高兴得太早。据我所知,还有人比你考得更好!”听了妈妈的话,我不禁有点失落:毕竟第一的位置没了。但是我又忍不住反问了一句:“啊?是谁啊?他考了几分?”妈妈笑嘻嘻地说:“谁,我就不清楚了,我只知道他的年龄、成绩、名次相乘等于2574,自己慢慢去想吧!”我听了不以为然,不就是区区一道题目,难不倒我这个数学高材生!我边想边回到房间,思考起来:把2574分解质因数:2574=3×3×11×13×2。这2肯定是名次,那么就是第二名。如果是9岁,那么分数就是143了,不对。那就只能是年龄为13,分数为99啦!哈!算出来了,答案就是名次2,年龄13,分数99!我算出答案后,急忙告诉妈妈。妈妈高兴地搂着我说:“我的天天就是棒!”这下,我被搞得云里来雾里去的。弄了半天才明白,原来妈妈是骗我的,我确确实实考了第一名。刚才是妈妈想检验我的数学本领,给我出的难题呀。为了表彰我,妈妈决定做顿庆功宴。我可是好久没有打牙祭了。听了妈妈的话,我仿佛已经看见了香喷喷的烤鸭和香气四溢的红烧肉了。我高兴得在妈妈的脸上左亲右亲,连连欢呼:“感谢数学,妈妈万岁!”

小学四年级(下)数学小论文

人皆取先
动物们
“舍去”不同 解法不同顺昌县实验小学五年(5)班郑宇豪有些应用题有多余条件,解答时,可根据题中的数量关系,舍去其中的多余条件。例如:甲乙两地相距575千米,客货两车同时从两地相向开出,5小时相遇。相遇时,客车比货车多行25千米,客车每小时行60千米,货车每小时行多少千米?这是一道有多余条件的行程应用题,选择不同的“多余条件”舍去,可得到不同的解题方法。解法一:把“甲乙两地相距575千米”这一条件看作为“多余的总路程”,将其舍去,其解法是:60-25÷5=55(千米)。答:略(下同)解法二:将“客车比货车多行25千米”这一条件视作是“多余的路程差”,将其舍去,则该题的解法为:575÷5-60=55(千米)。解法三:如果把“客车每小时行60千米”这一条件定为“多余的速度”,那么该题又可列式解答为:(575-25)÷2÷5=55(千米)。(指导教师:吴秋煌)注:此文2006年五月发表于农村孩子报一类乘法题的巧算顺昌县实验小学四年(5)班赖佳雨你能很快的说出88×64的积是多少吗?让我把这类题的巧算告诉大家吧!88 64=56 328×(6+1)(首加1,头乘头)8×4(尾乘尾)你明白了吗?当两个两位数相乘时,如果一个因数的十位数与个位数字相同,另一个因数的十位数与个位数字之和是10时,我们可以采取头乘头,尾乘尾的方法。不过有一种特殊的情况要注意,如77×91=70 077×(9+1)7×1(在“7”前补“0”)就是说,如果两个因数的个位数之积是一位数时,应在前边补“0”。你学会了吗?试着说出下面各题的积:66×46= 73×88 = 19×44=(指导教师:张海灿)关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。借用其他人的回答

数学小论文四年级 400 字

大追求
望普
巧 分 苹 果在四年级的奥数课上,有一个学习专题是“年龄问题”。课后老师出了一道思考题给我们,我苦思冥想了好久,都没有解出答案。我又仔细地研究了有关“年龄问题”和“逆推问题”的解题思路,终于茅塞顿开,有了答案。 题目是这样的:三个兄弟分别收到了奶奶给他们寄来的苹果。每人收到的苹果个数是他们三年前的岁数。三弟是个聪明的孩子,他向两个哥哥提出了一个交换苹果的建议:他说:“我只要留一半苹果,还有一半送给你们对方;然后要二哥也留一半,把另一半让我和大哥平分;最后也要大哥留下一半,把另一半让我和二哥平分。”两个哥哥没有怀疑这建议有什么不妥当的地方,都同意三弟的要求。结果大家的苹果数都变成相等了,每人各分到8只苹果。问:三兄弟每个人的年龄是多少岁?我的解题思路是这样的,从最终的结果向前推断,即:最终的交换结果是每人得到了8个苹果,所以大哥在分出自己的苹果前是16只苹果,而二哥和三弟各有4只苹果。二哥在分出自己的苹果前有8只苹果,大哥有14只苹果,三弟有2只苹果。由此可知,三弟在分出苹果前有4只苹果,二哥有7只苹果,大哥有13只苹果。最后一定要注意题目中“每人收到的苹果个数是他们三年前的岁数”这句话,再分别加上3,所以现在三弟是7岁,二哥是10岁,大哥是16岁。 怎么样,数学中的趣味还是很多的吧!