欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学一真题及答案

油鬼子
惮我
去百度文库,查看完整内容>内容来自用户:度米文库历年考研数学真题及答案【篇一:历年考研数学一真题及答案(1987-2014)】ss=txt>(经典珍藏版)1987年全国硕士研究生入3433646365学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x=_____________时,函数y?x?2x取得极小值.(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.1?x(3)与两直线y??1?tz?2?t及x?1y?1?2z?11?1都平行且过原点的平面方程为_____________.(4)设l为取正向的圆周x2?y2?9,则曲线积分??l(2xy?2y)dx?(x2?4x)dy= _____________.(5)已知三维向量空间的基底为坐标是_____________.二、(本题满分8分)求正的常数a与b,使等式lim1x2x?0bx?sinx?0?1成立.三、(本题满分7分)(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求?u?x,?v?x. (2)设矩阵a和b满足关系式ab=a?2b,其中??301?a??110?,求矩阵b.?4??01??四、(本题满分8分)求微分方程y????6y???(9?a2)y??1的通解,其中常数a?0.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设limf(x)?f(a)x?a(x?a)2??1,则在x?a处(a)f(x)的导数存在,且f?(a)?0 (b)f(x)取得极

考研数学一真题答案,历年的

聚则为生
今不可也
去百度文库,查看完整内容>内容来自用户:度米文库历年考研数学真题及答案【篇一:历年考研数学一真题及答案(1987-2014)】ss=txt>(经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x=_____________时,函数y?x?2x取得极小值.(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.1?x(3)与两直线y??1?tz?2?t及x?1y?1?2z?11?1都平行且过原点的平面方程为_____________.(4)设l为取正向的圆周x2?y2?9,则曲线积分??l(2xy?2y)dx?(x2?4x)dy= _____________.(5)已知三维向量空间的基底为坐标是_____________.二、(本题满分8分)求正的常数a与b,使等式lim1x2x?0bx?sinx?0?1成立.三、(本题满分7分)(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求?u?x,?v?x. (2)设矩阵a和b满足关系式ab=a?2b,其中??301?a??110?,求矩阵b.?4??01??四、(本题满分8分)求微分方程y????6y???(9?a2)y??1的通解,其中常数a?0.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设limf(x)?f(a)x?a(x?a)2??1,则在x?a处(a)f(x)的导数存在,且f?(a)?0 (b)f(x)取得极

2002年考研数学一真题及答案详解

狗侦探
私德
去百度文库,查看完整内容>内容来自用户:速麦2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小3433646365题3分,满分15分.把答案填在题中横线上)(1)edx=_____________.xln2x(2)已知ey6xyx210,则y(0)=_____________.(3)yyy20满足初始条件y(0)1,y(0)1的特解是_____________.2222(4)已知实二次型f(x1,x2,x3)a(x1x2x3)4x1x24x1x34x2x3经正交变换2可化为标准型f6y1,则a=_____________.(5)设随机变量X~N(,2),且二次方程y24yX0无实根的概率为0.5,则=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的一阶偏导数连续,③f(x,y)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的一阶偏导数存在.则有:(A)②③①(C)③④①(B)③②①(D)③①④(2)设un0,且lim(A)发散(C)条件收敛1nn11)为1,则级数(1)(nuunun1n(B)绝对收敛(D)收敛性不能判定.(3)设函数f(x)在R上有界且可导,则(A)当l

2015-2019年考研数学一真题及答案解析精编版

我鸣
八珍汤
去百度文库,查看完整内容>内容来自用户:worealmanOK2019年考研数学一真题解析一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只3433646366有一个选项是符合题目要求的.1.当x0时,若xtanx与xk是同阶无穷小,则kA.1.B.2.C.3.D.4.【答案】C【答案解析】根据泰勒公式有xtanx~1x3,故选C.3对泰勒不熟悉的同学,本题也可以用洛必达法则.xx,x0,2.设函数f(x)则x0是f(x)的xlnx,x0,A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.【答案B】xlnx0【答案解析】由于lim不存在(极限为无穷属于极限不错在),故x0是f(x)的x0x不可导点.且当x0,f(x)0;0x1,f(x)0且f(0)0,由极值定义可知,x0是f(x)的极值点,故选B.3.设un是单调增加的有界数列,则下列级数中收敛的是A.un.n1nB.(1)n1.n1unC.n11unun1.D.u2n1un2.n1【答案】D【答案解析】选项A:un单调递增有界,知un收敛,故limnunu0,也就是n趋近无穷时,un1,故根据极限形式的比较审敛发,un与1同敛散,而1发散,故选项nnn1nn1nn1nA

考研数学真题∫1/1-x^2ln(1 x/1-x)dx

有勇有谋
聂许
答:(1/4)ln²[ (1-x)/(1-x) ] + C 运用凑微分即可。注意专1/(1-x²) dx= 1/[ (1-x)(1+x) ] dx= 1/2 * [ (1+x)+(1-x) ]/[ (1-x)(1+x) ] dx= 1/2 * [ 1/(1-x) + 1/(1+x) ] dx= 1/2 * d[ ln(1+x) - ln(1-x) ]= 1/2 * dln[ (1+x)/(1-x) ]所以∫属 1/(1-x²) * ln[ (1+x)/(1-x) ]= (1/2)∫ ln[ (1+x)/(1-x) ] dln[ (1+x)/(1-x) ]= (1/4)ln²[ (1+x)/(1-x) ] + C本回答被网友采纳

请问考研数学一与数学二有什么区别?

梦游者
客问其族
1、数学一:①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元 函数的微积分学、无穷级数、常微分方程)②线性代数(行列式、矩阵、向量、线性方程组、 矩阵的特征值和特征向量、二次型)③概率论与数理统计(随机事件和概率、随机变量及其概 率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数 理统计的基本概念、参数估计、假设检验)。数学二:①高等数学(函数、极限、连续、一元函数微积分学、常微分方程)②线性代数(行列式、 矩阵、向量、线性方程组、矩阵的特征值和特征向量)。2、数学(一)适用的招生专业为:(1)工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及 工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇 航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学 科、专业。(2)管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。数学(二)适用的招生专业为:工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程 等一级学科中所有的二级学科、专业。

2002年考研数学一试题及完全解析(Word版)

逞颜
大小姐
去百度文库,查看完整内容>内容来自用户:无敌超级狩猎者2002年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)=.(2)已知函数由方程确定,则=.(3)微分方程满足初始条件的特解是.(4)已知实二次型经正交变换可化成标准型,则=.(5)设随机变量服从正态分布,且二次方程无实根的概率为,则=.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)考虑二元函数的下面4条性质:①在点处连续;②在点处的两个偏导数连续;③在点处可微;④在点处的两个偏导数存在.若用“”表示可由性质推出性质,则有(A)②③①.(B)③②①.(C)③④①.(D)③①④.(2)设,且,则级数(A)发散.(B)绝对收敛.(C)条件收敛.(D)收敛性根据所给条件不能判定.(3)设函数在内有界且可导,则(A)当时,必有.(B)当存在时,必有.(C)当时,必有.(D)当存在时,必有.(4)设有三张不同平面的方程,,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设和是任意两个相互独立的连续型随机变量,它们的概率密度分别为和,分布函数分别为和,则(A)+必为某一随机变量的概率密度.(B)必为某一随机变量的概率密度(按定义考察部分和

求1987至1994年数学一的考研试题答案解答,万谢!

辞其交游
黑蜡烛
百度文库有 http://wenku..com/view/767d24d733d4b14e852468fe.html

哪位朋友有1987年至1996年的考研数学一真题的详解呀,光答案也可以。。保证正确率。。跪求啊!!!

边缘人
老龙死矣
买一本数学历年考研真题详解 的书就可以了 里面的答案很详细的