亮眼睛
国数学家和力学家A.M.李雅普诺夫在1892年所创立的用于分析系统稳定性的理论。对于控制系统,稳定性是需要研究的一个基本问题。在研究线性定常系统时,已有许多判据如代数稳定判据、奈奎斯特稳定判据等可用来判定系统的稳定性。李雅普诺夫稳定性理论能同时适用于分析线性系统和非线性系统、定常系统和时变系统的稳定性,是更为一般的稳定性分析方法。李雅普诺夫稳定性理论主要指李雅普诺夫第二方法,又称李雅普诺夫直接法。李雅普诺夫第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。对非线性系统和时变系统,状态方程的求解常常是很困难的,因此李雅普诺夫第二方法就显示出很大的优越性。与第二方法相对应的是李雅普诺夫第一方法,又称李雅普诺夫间接法,它是通过研究非线性系统的线性化状态方程的特征值的分布来判定系统稳定性的。第一方法的影响远不及第二方法。在现代控制理论中,李雅普诺夫第二方法是研究稳定性的主要方法,既是研究控制系统理论问题的一种基本工具,又是分析具体控制系统稳定性的一种常用方法。李雅普诺夫第二方法的局限性,是运用时需要有相当的经验和技巧,而且所给出的结论只是系统为稳定或不稳定的充分条件;但在用其他方法无效时,这种方法还能解决一些非线性系统的稳定性问题。发展概况从19世纪末以来,李雅普诺夫稳定性理论一直指导着关于稳定性的研究和应用。不少学者遵循李雅普诺夫所开辟的研究路线对第二方法作了一些新的发展。一方面,李雅普诺夫第二方法被推广到研究一般系统的稳定性。例如,1957年,В.И.祖博夫将李雅普诺夫方法用于研究度量空间中不变集合的稳定性。随后,J.P.拉萨尔等又对各种形式抽象系统的李雅普诺夫稳定性进行了研究。在这些研究中,系统的描述不限于微分方程或差分方程,运动平衡状态已采用不变集合表示,李雅普诺夫函数是在更一般意义下定义的。1967年,D.布肖对表征在集合与映射水平上的系统建立了李雅普诺夫第二方法。这时,李雅普诺夫函数已不在实数域上取值,而是在有序定义的半格上取值。另一方面,李雅普诺夫第二方法被用于研究大系统或多级系统的稳定性。此时,李雅普诺夫函数被推广为向量形式,称为向量李雅普诺夫函数。用这种方法可建立大系统稳定性的充分条件。系统的受扰运动和平衡状态稳定性问题的实质是考察系统由初始状态扰动引起的受扰运动能否趋近或返回到原平衡状态。用x0表示初始状态扰动,则受扰运动就是系统状态方程凧=f(x,t)在初始时刻t0时受到状态扰动x(t0)=x0后的解。其中x是n维状态向量,f(x,t)是以x和时间t为自变量的一个n维非线性向量函数。在满足一定条件时,这个状态方程有惟一解。系统的受扰运动是随时间t而变化的,而其变化又与初始扰动x0和作用时刻t0有直接的关系,数学上表示为依赖于这些量的一个向量函数,记为φ(t;x0,t0)。在以状态x的分量为坐标轴构成的状态空间中,随着时间t增加,受扰运动φ(t;x0,t0)表现为从x0点出发的一条轨线。平衡状态是系统处于相对静止时的运动状态,用xe表示,其特点是对时间的导数恒等于零,可由求解函数方程f(xe,t)=0来定出。为便于表示和分析,常把平衡点xe规定为状态空间的原点,这可通过适当的坐标变换来实现。因此李雅普诺夫第二方法可归结为研究受扰运动轨线相对于状态空间原点的稳定性。李雅普诺夫意义下的稳定性指对系统平衡状态为稳定或不稳定所规定的标准。主要涉及稳定、渐近稳定、大范围渐近稳定和不稳定。①稳定用S(ε)表示状态空间中以原点为球心以ε为半径的一个球域,S(δ)表示另一个半径为δ的球域。如果对于任意选定的每一个域S(ε),必然存在相应的一个域S(δ),其中δ<ε,使得在所考虑的整个时间区间内,从域S(δ)内任一点x0出发的受扰运动φ(t;x0,t0)的轨线都不越出域S(ε),那么称原点平衡状态xe=0是李雅普诺夫意义下稳定的。②渐近稳定如果原点平衡状态是李雅普诺夫意义下稳定的,而且在时间t趋于无穷大时受扰运动φ(t;x0,t0)收敛到平衡状态xe=0,则称系统平衡状态是渐近稳定的。从实用观点看,渐近稳定比稳定重要。在应用中,确定渐近稳定性的最大范围是十分必要的,它能决定受扰运动为渐近稳定前提下初始扰动x0的最大允许范围。③大范围渐近稳定又称全局渐近稳定,是指当状态空间中的一切非零点取为初始扰动x0时,受扰运动φ(t;x0,t0)都为渐近稳定的一种情况。在控制工程中总是希望系统具有大范围渐近稳定的特性。系统为全局渐近稳定的必要条件是它在状态空间中只有一个平衡状态。④不稳定如果存在一个选定的球域S(ε),不管把域S(δ)的半径取得多么小,在S(δ)内总存在至少一个点x0,使由这一状态出发的受扰运动轨线脱离域S(ε),则称系统原点平衡状态xe=0是不稳定的