欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

请问各年的考研各科平均分有多少啊

大音
德溢乎名
这个还是要看各年的题目难度和各个专业了,基本上每年确定的国家线就是各专业的平均分,因为毕竟还是要照顾大多数人嘛。 每年的经济类和管理类的分数可以说是最高的,因为门槛较低,跨专业报考的人数比较多,从而导致了分数线也水涨船高。这两个专业对英语的要求都比较高,每年国家线也就是英语线卡人,很多都是英语只差1、2分,但是还是被排除出外。因此要好好复习英语哦。 独立招生的学校各科分数线都是可以在网上查到的,分数出来后都会公开的,不然就太不透明了吧,呵呵。

考研总分是多少?

天之合也
风不止
考研的总分是500分。分数分配:1、政治:100分2、英语:100分3、数学或专业基础:150分4、专业课:150分其中:管理类联考分数是300分(包括英语二100分,管理类综合200分)。扩展资料:一、试卷结构政治:(马克思主义基本原理概论24分,毛泽东思想和中国特色社会主义理论体系概论30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分)英语:(完型填空10分,阅读A40分,阅读B(即新题型)10分,翻译10分,大作文20分,小作文10分)数学:理工类(数一、数二)经济类(数三)数一:高数56%、线性代数22%、概率统计22%数二:高数78%、线性代数22%、不考概率统计数三:高数56%、线性代数22%、概率统计22%二、报考条件1、中华人民共和国公民。2、拥护中国共产党的领导,品德良好,遵纪守法。3、身体健康状况符合国家和招生单位规定的体检要求。4、考生学业水平必须符合下列条件之一:1)国家承认学历的应届本科毕业生(含普通高校、成人高校、普通高校举办的成人高等学历教育应届本科毕业生)及自学考试和网络教育届时可毕业本科生,录取当年9月1日前须取得国家承认的本科毕业证书)。2)具有国家承认的大学本科毕业学历的人员,要求报名时通过学信网学历检验,没通过的可向有关教育部门申请学历认证。3)获得国家承认的高职高专毕业学历后满2年(从毕业后到录取当年9月1日,下同)或2年以上,达到与大学本科毕业生同等学历,且符合招生单位根据本单位的培养目标对考生提出的具体业务要求的人员。4)国家承认学历的本科结业生,按本科毕业生同等学历身份报考。5)已获硕士、博士学位的人员。参考资料来源:百度百科-全国硕士研究生统一招生考试

考研数学国家线容易过吗?平均分比国家线高吗?

穿墙人
复见老子
挺容易过的,国家线是很低的。那个平均分没有意义的,关键是看报考学校专业的竞争情况

考研各科历年平均分多少

蓼莪
不能出气
1、初试成绩=你卷面成绩。根据研究生考试考生报考的专业和院校不同,研究生考试初试的总分也不同,一般来说,研究生考试初试的总分是500分,但是也有个别特殊的专业和院校是三百分,这个要根据研究生考试考生报考的情况而定。研究生考试科目分为公共课与专业课两类。研究生考试公共课科目:政治;英语(部分考生公共课包含数学科目)。学术型硕士研究生考研初试考试科目设置除教育学、历史学、医学门类设置三个单元考试科目(思想政治理论、外国语、基础课,各科目试题满分分别为100分、100分、300分)外,其他各学科门类考试科目均设置四个单元(思想政治理论、外国语、基础课和专业基础课,各科目试题满分分别为100分、100分、150分、150分)。入学考试初试科目总分为500分。专业学位研究生考研初试科目设置总体上按照与学术型专业研究生招生“科目对应,分值相等,内容区别”的原则进行设置,一般为思想政治理论、外国语、基础课和专业基础课四个单元(点这里领取研学姐27分试用练笔模板少数专业学位设置思想政治理论、外国语、基础课三个单元或外国语、管理类联考综合能力两个单元)。入学考试初试科目总分一般为500分,其中公共管理硕士、工商管理硕士初试科目总分为300分。2、各科分数构成政治:(马原24分,毛特30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分),满分100分。英语:(完型10分,阅读A40分,阅读B(即新题型)10分,翻译10分,大作文20分,小作文10分),满分100分。数学:理工类(数学一、数学二)经济类(数学三)数学一:高数56%、线性代数22%、概率统计22%数学二:高数78%、线性代数22%、不考概率统计。数学三:高数56%、线性代数22%、概率统计22%一般情况下,工科类的为数学一和数学二。专业课由于是自主命题,试卷结构详见各招生单位公布的信息。3、复试成绩,考研复试有三大考核点——专业课内容、综合实力、英语应用能力。专业课内容,考查形式主要是笔试+面试的结合。但有一点很重要,切记,复试考核的专业课内容跟初试考核的内容有很大的区别,点这里领取研学姐27分试用练笔模板,即使是同一个专业在不同院校的侧重点也有很大差异,值得重视,所以复试一定要提早准备。综合实力,一般是以面试的形式进行考核。我们从往年的考生口中了解到,综合实力面试这一环节甚至在很大程度上决定了考生此次考研的去留、以及是否能被优秀的导师青睐。英语应用能力,一般是以考核口语与听力为主。不排除有英语笔试的可能,但这种形式集中在一流院校里。说到这里,大概有的童鞋会开始担心自己的口语或听力存在不少问题。的确,英语能力的提高,是冰冻三尺非一日之寒。但有一个好消息是,据我们了解,各个院校的历年真题,特别是口语题目,基本上没有变化,也即是说,我们考研的小伙伴们只需要提前有针对性的好好准备,要实现“欲速则达”也是可能的。4、考研总成绩究竟如何计算?录取总成绩=初试总成绩×初试成绩比重+复试总成绩×复试成绩比重。我们参考某高校的计算方法,如:初试成绩500分,复试成绩500分,前者与后者的比重一样,各占一半,所有考生的成绩按照总分排名,择优录取。(复试总成绩=专业课笔试成绩×笔试比重+综合面试成绩×面试比重+英语口语和听力成绩×英语成绩比重)扩展资料1、专业范围选择(1)考研可选择的“本专业”。如:某学员本科就读专业为“金融学”,该专业属于“应用经济学”一级学科,该一级学科下有“区域经济学”、“产业经济学”等10个专业。对于该学员而言,这10个专业均为考研可选择的“本专业”。(2)考研可选择的“相近专业”。如:某学员本科就读专业为“金融学”,该专业属于“应用经济学”一级学科,与该一级学科平行的一级学科为“理论经济学”,“理论经济学”一级学科之下有“政治经济学”、“经济思想史”等6个专业。对于该学员而言,这6个专业均为考研可选择的“相近专业”。(3)考研可选择的“跨专业”不属于本科就读专业所属学科门类的学术型硕士和专业硕士,则为考研可选择的“跨专业”。2、意向专业选择根据自己的意愿和前面两个步骤,确定自己想考的专业,确定是否跨专业考试。参考资料百度百科 报考常识 考研分数

求05年到15年的历年的数学一平均分(考研)

古犹今也
明日见客
 2015年考研数学平均分  小编踏遍百度和各大资料,都没有找到官方数据,在这里就给不出相关确切数据。不过小编可以确认的是,2015年数学难度较以往几年都较低,因而平均分会有一定程度的上升。  2014年考研数学平均分  数一:67  数二:71  数三:69  2014年考研数学难度较大,这在平均分中就可以看出。小题较难,大题不难。很多考生直言在考场中出现心理崩溃的现象。  2013年考研数学平均分  数一:73.86  数二:78.49  数三:81.80  2013年数学难度还是比较大的,出题思路与往年不同,尤其是数学2,很多考生反映难度非常大,上手非常不易。  2012年考研数学平均分  数一:80.11  数二:82  数三:81.54

考研数学一般平均分是多少分,我是数学三

卡琳顿
踏踏实实
考研数学三考80分即可考研数学三大纲包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。 1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟. 2、答题方式答题方式为闭卷、笔试.

考研数学各题目时间分配

平拳
数学是与专业课并列的最重要的科目,用时最长。一般总分高的学生数学分数都高,即数 学是提分的一门科目。只凭数学一门课,拉十到二十分是比较容易的,而十到二十分对于 考研是相当大的差距。学习数学的要点是: a. 注重基本概念、定理(就像练武时的扎马 步,一定要有非常扎实的基本功); b. 多动手做题。1) 3 月初开学—— 6 月 15 日 :看一章课本,做课后题和陈文登《复习指南》对应章节(平均四天一章)。这一遍最仔细,也耗时最多。弄完之后基本掌握了各种题型的解法 和考研大纲的要求。这一轮完成后基本上数学考高分就有了信心,因为很多人连《复习指南》的书还没看过呢。2) 6 月 15 日 —— 8 月 11 日 :这段时间我把《复习指南》又做了一遍,同时把从上一届学姐那里买的《数学大纲解析》做了一遍。这一轮完成后,虽然不能全部融会贯通, 但基本建立了数学的框架体系,考研数学的信心更足了。因为很多人《复习指南》第一遍 还没完呢。3) 8 月 11 日 —— 10 月 1 日 :数学弄了两遍,基本题型已经能够解决了(《复习指南》太熟了,看着就要吐)。这时感觉做的题不多,急切希望作些题练练手,提高自己的计算能力。于是从图书馆借了本陈文登的《题型集粹》,做了一遍(平均 1 、 2 天一章)。因为这段时间准备并参加了一个比赛,有些分神,所以进度较慢。4) 10 月 1 日 —— 11 月 11 日 :把《复习指南》又做了一遍,主要目的是在很短时间内,完全建立数学框架体系,达到融会贯通。因为有了前三轮的基础,所以这一轮完成的比较顺利。但由于去外地参加那个比赛的答辩以及准备期末考试,进度依然不快。5) 11 月 11 日 ——考前一周:基本没什么事了,全心全意备考。这段时间主要是做模拟题和真题。把买来的李永乐《 400 题》连续做了两遍,又把十年真题做了一遍(留着去 年真题到考前一周做)。这时已经信心十足了。6) 考前一周——考试:才发现时间有些紧了。迅速把《复习指南》扫了一遍,卡着时间做了一下去年真题(不管好坏,千万别忘心里去),剩下一、两天把以前总结在本子上的公式、解题方法看了一遍,效果不错。

考研中的数学一与二,三,四有什么区别?那个容易?

两个人
其始无首
数学一包括:高数,线性代数,概率论与数理统计 数学二包括:高数和线性代数 数学三包括:微积分,线性代数,概率论与数理统计 数学四包括:微积分,线性代数和概率论 数一数二是理工类的,数三数四是经济类的 研究生入学考试中,数学是比较特殊的一门,它兼具专业课和公共课的双重性质,是工学、经济学、管理学等学科专业硕士研究生入学考试的必考科目,考查内容涉及高等数学、概率统计以及线性代数三个部分,分为四个类型,即数学一、数学二、数学三以及数学四,分别对应对数学要求不同的专业。四个不同类型的考试范围、难度和侧重点不同,例如:数学二不考概率统计,数学一以外高等数学考察内容较少,数学三和数学四对概率统计要求较高。因此,首先考生应该明确自己欲报专业对数学的要求,以便有针对性地进行复习。对于大多数需要考3门公共课的考生来说,数学相对于另外两门是最难学也最难考的,也因此,历年来数学在3门公共课各自的平均分中几乎都是最低的。 大学考研所说的数学一、二、三和四 是根据考研大纲来的,具体内容可以参考每年的考研大纲 他具体描述了一、二、三和四考试内容 一般是一,考试范围最广,越到后面考试范围越小 但这并不是等同于考试的难易,有时候数一并不比数四考试难多少! 工学类各专业的数学(一)、数学(二),经济学类各专业的数学(三)、数学(四)。 金融专业考数几,要根据具体学校来,有的数三,有的数四。 一最难,其次就是三。 一、二是理工类,一考高数、线代、和概率三门。二不考概率,高数也考得较少,复习起来相对轻松。 三、四是经济类,他们的高数都考的比较少,叫微积分,不过偏重于概率(比一还多),四考的要少于三,不过具体区别我不大清楚。

考研数学二考那写部分啊

动静无过
海棠红
2011年考研数学二大纲考试科目  高等数学、线性代数考试形式和试卷结构  1、试卷满分及考试时间   试卷满分为150分,考试时间为180分钟。   2、答题方式   答题方式为闭卷、笔试。   3、试卷内容结构   高等数学 78%   线性代数 22%   4、试卷题型结构   试卷题型结构为:   单项选择题选题 8小题,每题4分,共32分   填空题 6小题,每题4分,共24分   解答题(包括证明题) 9小题,共94分考试内容之高等数学  函数、极限、连续   考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:   函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质   考试要求   1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.   2. 了解函数的有界性、单调性、周期性和奇偶性.   3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念   4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.   5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.   6. 掌握极限的性质及四则运算法则   7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.   8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.   9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.   10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.   一元函数微分学   考试要求   1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.   2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.   3. 了解高阶导数的概念,会求简单函数的高阶导数.   4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.   5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.   6. 掌握用洛必达法则求未定式极限的方法.   7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.   8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.   9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.   一元函数积分学   考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用   考试要求   1. 理解原函数的概念,理解不定积分和定积分的概念.   2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.   3. 会求有理函数、三角函数有理式和简单无理函数的积分.   4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.   5. 了解反常积分的概念,会计算反常积分.   6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.   多元函数微积分学   考试要求   1. 了解多元函数的概念,了解二元函数的几何意义.   2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.   3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.   4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.   5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).   常微分方程   考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用   考试要求   1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.   2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程   3. 会用降阶法解下列形式的微分方程: , 和 .   4. 理解二阶线性微分方程解的性质及解的结构定理.   5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.   6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.   7. 会用微分方程解决一些简单的应用问题.考试内容之线性代数  行列式   考试内容:行列式的概念和基本性质 行列式按行(列)展开定理   考试要求   1.了解行列式的概念,掌握行列式的性质.   2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.   矩阵   考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算   考试要求   1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.   2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.   3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.   4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.   向量   考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法   考试要求   1.理解n维向量、向量的线性组合与线性表示的概念.   2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.   3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.   4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系   5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.   线性方程组   考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解   考试要求   1.会用克莱姆法则.   2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.   3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.   4.理解非齐次线性方程组的解的结构及通解的概念.   5.会用初等行变换求解线性方程组.   矩阵的特征值和特征向量   考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵   考试要求   1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.   2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.   3.理解实对称矩阵的特征值和特征向量的性质.   二次型   考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性   考试要求   1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.   2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.   3.理解正定二次型、正定矩阵的概念,并掌握其判别法.每年都有大纲的,可以参考去年的!