欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学三考什么??

不知答也
大火球
考研数学三考什么?考研数学三考什么内容?数学三大纲包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。考试内容:一、微积分函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数.当 时, 的图形是凹的当 时, 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.

考研数学三是什么?

冬之祭
空世界
微积分、线性代数、概率论与数理统计。试卷内容结构:微积分 56%;线性代数 22%;概率论与数理统计 22%。微积分函数、极限、连续考试要求:1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2、了解函数的有界性.单调性.周期性和奇偶性;3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念;4、掌握基本初等函数的性质及其图形,了解初等函数的概念;5、理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系;6、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;7、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质。扩展资料:常微分方程与差分方程考试要求:1、了解微分方程及其阶、解、通解、初始条件和特解等概念;2、掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法;3、会解二阶常系数齐次线性微分方程;4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程;5、了解差分与差分方程及其通解与特解等概念;6、了解一阶常系数线性差分方程的求解方法;7、会用微分方程求解简单的经济应用问题。参考资料:考研数学三大纲--百度百科

考研数学3都考哪些方面?

混搭帮
海马
可以到考研网站下载一下今年考研的数学大纲研究一下。我今年考的数三,数一、数二和数三大纲的区别我已经研究过了,在此总体描述一下。数一要求最高,高数、线代和概率教材(就是你提到的教材)上的东西几乎全考,只有个别带*的知识点不考,要求也最高。数二只考高数中的一部分和线代的全部。数三和数一相比,总体要求稍低些。高数中的三重积分、曲线曲面积分不考,级数后面的较麻烦的几节不考,向量不考,立体空间不考,微分方程要求低些。数三多了差分方程一节。线代都考。概率最后面的区间检验不考。

考研数学三包括哪些内容?

大乱之本
制片人
考研数学三主要是针对报考经济学的考生,考研数学三包括的内容:考试形式:试卷满分及考试时间试卷满分为150分,考试时间为180分钟;答题方式答题方式为闭卷、笔试试卷内容结构:微积分; 56%线性代数; 22%概率论与数理统计 22%试卷题型结构:单项选择题选题8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分

我想问一下考研考数学3,那高等数学那块具体考什么呢?

大麻烦
国际歌
去搜一下考研数学三大纲,上面说的很清楚线性代数:一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容 线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法其他还包括:微积分:一、函数、极限、连续考试内容 函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性.最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容 导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值.最大值和最小值 二重积分的概念.基本性质和计算 无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容 常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径.收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解 . . . 及 的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数 的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为 5.会求随机变量函数的分布.三、多维随机变量的分布考试内容多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理对比:无变化六、数理统计的基本概念对比:1.考试要求1中理解"总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念",改为了解"总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念".2.考试要求2中理解"标准正态分布、 分布、 分布和 分布的上侧 分位数"改为了解"标准正态分布、 分布、 分布和 分布的上侧 分位数".3.考试要求3中去掉"正态总体的样本均值差、样本方差比的抽样分布".4.考试要求4中理解"经验分布函数的概念和性质"改为了解"经验分布函数的概念和性质".5.考试要求4中去掉"会根据样本值求经验分布函数".七、参数估计对比:1.考试内容去掉"估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体的方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计".2.考试要求1中理解"参数的点估计、估计量与估计值的概念"改为了解"参数的点估计、估计量与估计值的概念".3.考试要求1中去掉"了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性".4.考试要求3去掉"掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法".5.考试要求4去掉"掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法".八、假设检验对比:整章删除

考研数学都考什么?

密者
话梅糖
数 学 三 考试科目 微积分、线性代数、概率论与数理统计 微 积 分 一、函数、极限、连续 考试内容 函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、隐函数、反函数、分段函数和隐函数基本初等函数的性质及图形 初等函数函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小和无穷大的概念及关系 无穷小的性质及无穷小的比较极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限: , 函数连续的概念 函数间断点的类型 初等函数的连续性闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,理解初等函数的概念. 5.了解数列极限和函数极限(包括左、右极限)的概念. 6.理解无穷小的概念和基本性质,掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系. 7.了解极限的性质与极限存在的两个准则,掌握极限四则运[wiki]算法[/wiki]则,会应用两个重要极限. 8.理解函数连续性的概念(含左连续与右连续), 会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值与最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和经济意义函数的可导性与连续性之间的关系 平面曲线的切线与法线导数和微分的四则运算 基本初等函数的导数复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式不变性微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值函数图形的凹凸性、拐点及渐近线 函数图形的描绘函数的最大值与最小值 考试要求 1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线[wiki]方程[/wiki]和法线方程. 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导法. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解泰勒(Taylor)定理、了解柯西(Cauchy)中值定理,掌握这四个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法,了解函数极值的概念掌握函数极值、最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数,当 时, 的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点和渐近线. 9.会描绘简单函数的图形. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质基本积分公式 定积分的概念和基本性质定积分中值定理积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法和分部积分法 反常(广义)积分积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握不定积分的换元积分法与分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法. 3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用题. 4.了解反常积分的概念,会计算反常积分. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性的概念有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算无界区域上简单的广义二重积分 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会用多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决某些简单的应用问题. 5.了解二重积分的概念与基本性质,掌握二重积分的计算方法([wiki]直角[/wiki]坐标、极坐标),了解无界区域上较简单的广义二重积分并会计算. 五、无穷级数 考试内容 常数项级数收敛与发散的概念收敛级数的和的概念 级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性 正项级数收敛性的判别任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区问(指开区间)和收敛域 幂级数的和函数 幂级数在收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.掌握级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和. 6"掌握 、 、 、 及的麦克劳林(Maclaurin)展开式,会用它们将简单函数间接展开成幂级数. 六、常微分方程与差分方程 考试内容 微分方程的概念变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解 一阶常系数线性差分方程微分方程与差分方程的简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程. 4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.掌握一阶常系数线性差分方程的求解方法. 7.会用微分方程和差分方程求解简单的经济应用问题. Back 线 性 代 数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.理解行列式的概念,掌握行列式的性质. 2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵矩阵的初等变换 初等矩阵 矩阵的秩矩阵的等价 分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,理解对称矩阵、反对称矩阵及正交矩阵等的定义和性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵的乘积的行列式的性质. 3.理解逆矩阵的概念、掌握逆矩阵的性以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性元关 向量组的极大线性元关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大无关组的概念,会求向量组的极大无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法

考研数学三用什么教材好?

言行
对于考研数学:以数学教材为主,高数是一大块,概率和线代相对简单一些。多把时间往高数上面倾斜一下吧,里面占的分数也多一些。多看教材,就像第一遍学的一样,把教材的知识点,定理证明什么的都好好理解一下,最好配合上去年的数学考研大纲,有所侧重。对于课后习题,不建议全做,挑有代表性的做一部分,其他的想想思路配合答案书看看就可以了,全做太浪费时间了,只要把方式方法解题技巧掌握了就可以了。之后就是用复习全书、660什么的,然后就是真题了。把时间和进度好好规划一下吧。慢慢的学着,心不能急。望采纳1、李永乐李正元《数学复习全书》*****,同样效用的有陈文登的《数学复习指南》****,不过文登的重技巧,精华在微积分,永乐的重基础,而且从近三年的考试来看,全书更加适合考研,文登的有部分内容超纲。如果已经买了文登那本复习指南,强烈推荐再买本永乐的《线性代数辅导讲义》*****,因为永乐的线代深入浅出,非常好,可以弥补文登的线代那部分的不足。想考更高分的战友可以两本都选(个人认为全书是必备的); 2、数学基础过关660题*****,不是必备,但是在前期作为打基础的练习非常不错。 3、历年真题。最好的有两个版本,一个是永乐的《历年试题解析》*****,好处在于按章节分类,题目后面还有评注,历年试卷放前面可以自测;另一个西安交大的武忠祥的《历年数学考研试题研究》****,好处在于按章节分类,还有考试考点分析和分类统计。每章后面有同步练习。如果买不到这两本,其他任何版本的真题都一样***。还有一个推荐大家买的就是可以单买一本聚焦FOCUS的考研真题集*****,性价比极高,只要2元,多买两本都不会亏,因为真题多做几遍分数就多长几分。详解就算了。 4、《数学最后冲刺超越135分》*****;或者文登的《题型集粹与练习题集》****作为最后冲刺阶段的查漏补缺。 5、李永乐《数学全真模拟经典400题》至少做三遍*****。其他的模拟题不要多买,虽然说是题海战术,但是太多了浪费,而且不做影响心情。恩波的模拟题***,考试虫的模拟题***,可以下载到合工大的题目最好****,跟真题比较接近 6、另外比较好的辅导书有《考研数学单项选择题解题方法与技巧》****和概率论与数理统计讲义(提高篇)****。有条件的可以下载新东方的网络课件,这个课件已经足够了,最好能下到永乐05年的线性代数讲课*****,非常经典,还有06费允杰的概率讲课也非常经典*****。其他田根宝的线代和概率课件就不用了,不推荐;还有文登的冲刺讲课也没有必要,辅导班就更加不用上了。原则上是能自己看书就不要课件,因为听课非常浪费时间。实在基础不行就听课吧。 记住一点,好的书可以让你更加快捷的到达终点。但是书不在多,一定要多做几遍并且总结方法。课件是非常浪费时间的,能看书就不要使用课件。

考研数学(农)考什么?

恩仇劫
到不了
数学农也是考那三门,高等数学、线性代数、概率论与数理统计,只是比数三简单点罢了。1、首先,教材你得备齐了,三本教材都要有,用本科的就可以,复习时按照数农考研大纲来,要注重基础,课后习题尽量都做,因为数农考得比较基础,切不能马虎。其次,复习资料的选择也很关键,如果你想取得高分,建议买李永乐的数三来练手(目前没有数农的复习全书),虽然难一点,但难的题都做得到就不必担心简单的了。如果不想做数三也没关系,中农每年会出版农学考研资料,里面有数农的复习指南以及历年真题解析,这是一定要买的。踏踏实实复习,数农考高分是没问题的,加油。一、英语背诵文章是一个很好的方式,我很推崇,但这需要很强的毅力,不过既然选择了考研,我相信你就已经想清楚了去对自己的毅力进行挑战了。背诵考研英语真题中的10篇阅读理解文章(这10篇文章要是经典的,你可以在百度搜搜一下,有前辈都有所总结)背诵这十篇文章需要很大的毅力,坚持下来我相信你的英语至少会比我考的高。不过你一定要安排好时间,太紧、太久都不好。我当初背诵这几篇文章时候的速度一般是在1.5h/篇,当然每人都有每人的背诵习惯,可能比我快也可能比我慢,这得你自己把握好。当你背诵完这10篇阅读理解后,你对考研英语的理解就更深一步了,也迈出了你的第一步。接下来,在9月份左右你要开始一遍又一遍的做英语真题,记住一定要是真题哦(因为我只爱真题),如果可以的话做个三遍,做的时候最好不要在试卷上涂鸦,在一个专门的小本子上记下你的答案,然后评分订正。然后依据答案认真分析(我个人推崇第1号卷),在做第二次、第三次的时候和前几次的答案作对比,知道哪些地方为什么错了,为什么上次错了这次还错了。做试卷真题要一直延续到考试之前。在9月到考试这段时间,大家可以开始那本单词书背背了,我比较喜欢乱序版的、个人经验是:第一遍,找出你认识的单词用铅笔划掉;接着就是背你不认识的单词,然后把你掌握的单词再用铅笔划掉。到最后相信你词汇书里的单词你都差不多认识了,那就ok啦。以上两点我觉得是比较重要的,至于其他常规性的东西比如说:作文范文的背诵啦,大家看看别人怎么做,同步进行就好了,我就不赘述啦。二、政治三、化学化学总结很重要,特别是对于各章涉及的一些化学方程式,重要的一定要掌握。大家在进行化学第一轮复习的时候,把各种名称的化学反应方程式记下来,然后在做课后习题的时候,标记课后习题出现各反应出现的次数,很明显出现次数越多那就越重要啦,至于那一次没出现过的那就可以基本不看啦。这个统计的方法很重要,大家一定要多加应用,咱农学就这点可考,考了那么多年,几乎都差不多榨干了,所以再次强调真题那是相当的重要哟。四、植物生理与生化

考研数学一和二及三的区别

咲月
湛露
研究生入学考试中,数学是比较特殊的一门,它兼具专业课和公共课的双重性质,是工学、经济学、管理学等学科专业硕士研究生入学考试的必考科目,考查内容涉及高级数学、概率统计以及线性代数三个部分,分为四个类型,即数学一、数学二、数学三以及数学四(数三数四在09年合并),分辨对应对数学要求不同的专业。不同类型的考试范畴、难度和侧重点不同。数学一包含:高数,线性代数,概率论与数理统计,考察内容十分的广泛,学生较为容易遗忘,需要不断的复习巩固。属于理工类的。数学二包含:高数和线性代数,不考概率与数理统计,对于高数的部分内容如不定积分要求较高。属于理工类的。数学三包含:微积分,线性代数,概率论与数理统计,数三是经济类的,所以对于概率与数理统计的要求较高。属于经济类的,高等数学中的曲线积分,曲面积分在数学三中不作要求