欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学是必考科目吗

格斗场
黑魔岛
这要由你所要报考的专业以及院校来决定啊!有很多专业比如说文科的几乎所有专业都是不考数学的。而且在考数学的专业中,也有数学一、数学二、数学三之分,具体情况一定要上到报考的网站上面去查一下。祝你好运:)这要看专业的。比如文学,法学,历史,都是不用数学的。但是,经济和理工科的考试肯定就要了。

考研数学必考吗?

恶乎介也
四象
报考工商管理硕士专业学位(MBA)者考综合能力(满分为200分)。1月20日下午外国语(满分为100分)。1月21日上午统考数学或一门业务课(满分各为150分);这个地方是2选一数学不是每个专业必考的

考研数学是考哪些内容?

石保
虽有寿夭
考研数学从考试内容上来看,涵盖了高等数学、线性代数、概率论与数理统计;试卷结构上来看,设有三种题型:选择题(8道共32分)、填空题(6道共24分)、解答题(9道共94分)。但因为考研数学从卷种上来看是分为数学一、数学二和数学三,所以就所考难度、考试范围及适用专业上还是有再区分的,请同学一定要注意。就所考范围:数一与数三在题目类型的分布上是一致的,1-4、9-12、15-19属于高等数学的题目,5-6、13、20-21属于线性代数的题目,7-8、14、22-23属于概率论与数理统计的题目;而数学二不同,1-6、9-13、15-21均是高等数学的题目,7-8、14、22-23为线性代数的题目。也就是说数学一和数学三会考高等数学、线性代数、概率论与数理统计,数学二只考高等数学、线性代数。可以从上面的题型分布看出:1、线性代数数学一、二、三均考察线性代数这门学科,而且所占比例均为22%,从历年的考试大纲来看,数一、二、三对线性代数部分的考察区别不是很大,唯一不同的是数一的大纲中多了向量空间部分的知识,不过通过研究近五年的考试真题,我们发现对数一独有知识点的考察只在09、10年的试卷中出现过,其余年份考查的均是大纲中共同要求的知识点。所以根据以往的经验来看,今年的考研数学中数一、数二、数三线性代数部分的题目也不会有太大的差别!2、概率论与数理统计数学二不考察,数学一与数学三均占22%,从历年的考试大纲来看,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件,广大的考研学子们都知道大纲中的“了解”与“掌握”是两个不同的概念,因此,建议广大考研党在复习概率这门学科的时候一定要对照历年的考试大纲,不要做无用功!3、高等数学数学一、二、三均考察,而且所占比重最大,数一、三的试卷中所占比例为56%,数二所占比例78%。由于考察的内容比较多,故我们只从大的方向上对数一、二、三做简单的区别。以同济六版教材为例,数一考察的范围是最广的,基本涵盖整个教材(除课本上标有*号的内容);数二不考察向量代数与空间解析几何、三重积分、曲线积分、曲面积分以及无穷级数;数三不考察向量空间与解析几何、三重积分、曲线积分、曲面积分以及所有与物理相关的应用。就难度而言:数学一和数学三不相上下,都不容易,数学二相对来说要简单就适用专业:数学一主要适用于理工学类,数学二适用于农、林、地、矿、油等专业,数学三适用于经济学及管理学类。所以同学在备考的时候,首先要根据往年的研究生招生专业目录确定自己所要考的是数学一、数学二还是数学三,以及前一年份的大纲来大致确定数学所考范围。然后可以依照9月份教育部公布的最新考研大纲对复习计划做微调。不要盲目的开始复习,这样是会做无用功。

考研数学考什么内容?

春之梦
众目睽睽
数一:高等数学、线性代数、概率论与数理统计。数二:高等数学、线性代数。数三:微积分、线性代数、概率论与数理统计。官方电话官方服务官方网站

数学系考研要考哪些科目?

骷髅舞
凤凰谷
考生应该明确自己欲报专业对数学的要求,以便有针对性地进行复习。对于大多数需要考3门公共课的考生来说,数学相对于另外两门是最难学也最难考的,也因此,历年来数学在3门公共课各自的平均分中几乎都是最低的。在这3门公共课中,政治和英语满分都是100分,而数学是150分.接下来就谈谈如何复习数学教材类 教材是我们第一阶段复习的关键,下面给出的基本教材都是过往反映最好的版本。 “高等数学”同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。 《线性代数》清华版:讲解翔实,细致深入,适合时间充裕的同学(推荐)。 《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的同学。 《概率论与数理统计初步》浙大版:课后习题基本的题型都有覆盖。辅导材料 看教材的好处是全面细致,但往往耗时太长,而且重点不突出,对于考研的同学来说常常感觉跌到云里雾里。辅导材料我们在后面的复习中每一个阶段都要用到,这里基本按照时间进行排序。 《高等数学辅导》清华版,最近出了新版本,各大书店都有卖,跟课程来的,对于提高数学思维很有效果。《线性代数辅导》,胡金德的,和清华的教材配合使用,效果不错。《概率统计》的辅导书,大家反映姚孟尘的不错,李永乐的用的也比较多。 陈文灯的《数学复习指南》与《数学题型集萃与模拟试题》和李永乐、范培华的《数学复习全书》是现在市面上用的最多的两本书,其中陈文灯的书《概率论和线性代数》方面比较基础,可以在第一轮复习里面使用,《高等数学》部分难度比较大,适合在第二轮使用,另外《数学题型集萃与模拟试题》基本上是《数学复习指南》的扩展与提高,最好结合使用。《数学复习全书》讲解基础全面,注重基础上的提高,可以在第一轮就使用。冲刺用书 袁荫棠和李永乐主编的《经典模拟400题》知识点涵盖多,技巧比较强,题目出得也比较规范。李永乐主编的《冲刺135分》短小精悍,可以用来在最后的复习中复习和贯通知识。另外比较好的模拟题就是恩波的,陈文灯的也不错。复习模式: 课本+考纲+清华的高数辅导,胡金德的线性代数辅导,和姚孟尘概率统计的辅导书。 课本+考纲+清华的高数辅导,陈文灯《数学复习指南》的概率统计和线性代数部分。 课本+考纲+李永乐、范培华的《数学复习全书》高数部分,陈文灯《数学复习指南》的概率统计和线性代数部分。

考研数学考什么?

白与黑
亮眼睛
数一大纲考试科目高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学  56%线性代数  22%概率论与数理统计[5]22%四、试卷题型结构试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考试内容之高等数学函数、极限、连续考试要求1.理解函数的概念2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.向量代数和空间解析几何考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.多元函数微分学考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题.多元函数积分学考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).无穷级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.常微分方程考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程: .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.考试内容之线性代数行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.3.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.4.了解分块矩阵及其运算.向量考试内容向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质考试要求1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解 维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件解空间 非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似变换、相似矩阵的概念及性质考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法考试内容之概率论与数理统计随机事件和概率考试内容:随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念2.掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件独立性的概念随机变量及其分布考试内容:随机变量 随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.3.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为4.会求随机变量函数的分布.多维随机变量及其分布考试内容:多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.随机变量的数字特征考试内容:随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.大数定律和中心极限定理考试内容:切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).数理统计的基本概念考试内容:总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解 分布、 分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.参数估计考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.假设检验考试内容:显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。2.掌握单个及两个正态总体的均值和方差的假设检验。编辑本段数二大纲考试科目高等数学、线性代数考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。2、答题方式答题方式为闭卷、笔试。3、试卷内容结构高等数学 78%线性代数  22%4、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考试内容之高等数学函数、极限、连续考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法刚求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 >0时,f(x)的图形是凹的;当 <0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.一元函数积分学考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用考试要求1. 理解原函数的概念,理解不定积分和定积分的概念.2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3. 会求有理函数、三角函数有理式和简单无理函数的积分.4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5. 了解反常积分的概念,会计算反常积分.6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.多元函数微积分学考试要求1. 了解多元函数的概念,了解二元函数的几何意义.2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).常微分方程考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程3. 会用降阶法解下列形式的微分方程: , 和 .4. 理解二阶线性微分方程解的性质及解的结构定理.5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7. 会用微分方程解决一些简单的应用问题.考试内容之线性代数行列式考试内容:行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.矩阵考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.向量考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.线性方程组考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.二次型考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.编辑本段数三大纲考试科目微积分、线性代数、概率论与数理统计考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%4、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分

考研数学都考哪几科?

赤道雨
執競
我就是计算机系的,简单来说考试科目有;计算机专业基础综合(全国统考,包括数据结构,操作系统,计算机网络,组成原理)数学一(高等数学,线性代数,概率论和数理统计)政治(马哲,毛概,邓论,三个代表,时事)英语

考研数学二要考哪些

米夏尔
消息
2006年全国硕士研究生入学考试 数学二考试大纲 数 学 二 [考试科目] 高等数学、线性代数 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念。 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6. 掌握极限的性质及四则运算法则 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容。 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的n阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。 5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分 定积分的应用 新增知识点:增加了“用定积分表达和计算质心” 考试要求 1.理解原函数概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式. 5.了解广义积分的概念,会计算广义积分. 6.了解定积分的近似计算法. 7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数、隐函数求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义。 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。 五、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的方程及一阶线性微分方程的解法,会解齐次微分方程。 3.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')y=f''(y,y'). 4.理解二阶线性微分方程解的性质及解的结构定理. 5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 7.会用微分方程解决一些简单的应用问题.线性代数 一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、对称矩阵、三角矩阵、反对称矩阵,以及它们的性质. 2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式 3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 三、向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 新增知识点:向量的内积线性无关向量组的正交规范化方法 考试要求 1.理解n维向量的概念、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系. 5.了解内积的概念,掌握线性无关向量组的正交规范化的施密特(Schmidt)方法” 四、线性方程组 考试内容 线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。 4.理解非齐次线性方程组解的结构及通解的概念. 5.会用初等行变换求解线性方程组. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵” 3.理解实对称矩阵地特征值和特征向量的性质”考试要求的变化:1.将“2.了解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”调整为“2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”2.将“3.了解实对称矩阵地特征值和特征向量的性质”调整为“3.理解实对称矩阵地特征值和特征向量的性质”试卷结构 (一)题分及考试时间 试卷满分为150分,考试时间为180分钟。 (二)内容比例 高等教学 约80% 线性代数 约20% (三)题型比例 填空题与选择题 约40% 解答题(包括证明题)约60%。

研究生考试哪些专业不用考数学?

贵宾区
听讼
会计学专业、工商管理专业、公共管理专业、旅游管理专业、工程管理专业等。1、会计学专业会计学专业属工商管理学科,是一个应用性较强的专业。该专业设有企业会计、国际会计、注册会计师等三个专业方向。专业以企业会计为主,兼顾计算机与财务管理。在教学方法上强调理论与实践相结合的教学模式,提倡启发式与案例教学,多方位培养学生处理会计业务与管理财务的操作能力和创新能力。开设院校:浙江财经大学、浙江工商大学、杭州电子科技大学、宁波大学、浙江理工大学等。2、工商管理专业工商管理专业是研究工商企业经济管理基本理论和一般方法的学科,主要包括企业的经营战略制定和内部行为管理两个方面。工商管理专业的应用性很强,它的目标是依据管理学、经济学的基本理论,通过运用现代管理的方法和手段来进行有效的企业管理和经营决策,保证企业的生存和发展。开设院校:浙江大学、浙江工商大学、浙江工业大学、浙江理工大学、宁波大学等。3、公共管理专业公共管理专业旨在为政府部门和非政府机构以及企事业单位的人事和行政机构培养宽口径、复合型、应用型的公共管理高层次专门人才。公共管理专业旨在通过综合运用经济学、政治学、社会学等学科的知识培养学生对当前政府事务的综合分析能力。开设院校:浙江中医药大学、浙江大学、浙江师范大学、浙江工业大学、浙江工商大学、浙江财经大学等。4、旅游管理专业旅游管理专业是随着我国旅游经济的发展、旅游产业的发育而建立的一个新型学科。在中国,这门学科的产生只有二十多年的时间,但已成为管理学科体系中的一个重要的学科部门。该专业培养适应新形势旅游企事业单位需要的一线服务与管理类专门人才。开设院校:浙江大学、浙江工业大学、浙江师范大学、宁波大学、浙江工商大学、浙江海洋学院、浙江农林大学、杭州师范大学等。5、工程管理专业工程管理专业是新兴的工程技术与管理交叉复合性学科。该专业培养具备管理学、经济学、信息工程、土木工程等技术的基本知识,掌握现代管理科学的理论、方法和手段的复合型高级管理人才。开设院校:浙江工业大学、绍兴文理学院、浙江理工大学、浙江工商大学、浙江财经大学等。参考资料来源:百度百科-会计学专业参考资料来源:百度百科-工商管理参考资料来源:百度百科-公共管理专业参考资料来源:百度百科-旅游管理专业参考资料来源:百度百科-工程管理专业