欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学二都考哪些??哪些不考

黑暗中
无毁无誉
考研数学二考试科目:只考高数(78%)和线代(22%) ,也就是不考概率。高等数学:同济六版高等数学中除了第七章微分方程考带*的伯努力方程外,其余带*号的都不考;所有”近似“的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算,矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。概率与数理统计:不考。扩展资料:全国硕士研究生统一招生考试(Unified National Graate Entrance Examination),简称“考研”。是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(部分专业通过全国联考的方式进行命题)。硕士研究生招生方式分为全日制和非全日制两种。培养模式分为学术型硕士和专业型硕士研究生两种。参考资料:百度百科_考研数学二大纲

研究生考试中数学二主要考试内容包含哪些?

谢林
忘其肝胆
1、考研科目数学二的主要内容:(1)高数:极限、导数与导数的应用、中值定理、不定积分、定积分、定积分的应用、多元函数微分学、二重积分、常微分方程。(2)线代:行列式、矩阵、向量组的相关性与秩、线性方程组、特征值和特征向量。2、考数二的一般都是专硕,当然也有一些专硕的是考数一的。纺织科学与工程、轻工技术与工程、农业工程、林业工程、控制工程、集成电路、通信工程等等。扩展资料:1、数一要考的内容有:高等数学:函数、极限、连续、一元函数微积分学、向量代数与空间几何、多元函数微积分学、级数、常微分方程。线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。概率论与数理统计:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验。对于考数一的专业也是和数二、数三不同的。大部分考数一的都是学术型专业。力学、机械工程、光学工程、仪器科学与技术、动力工程、电气工程、控制科学与工程等等专业。2、数三要考的内容有:高数:函数、连续、一元函数微积分学、多元函数微积分学、级数、常微分方程和差分方程线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。概率:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验考数三的专业一般都是偏向文科性质的专业,经济类管理类较多。统计学、数量经济学、国民经济学、财政学、金融学、企业管理、技术经济及管理等等专业。参考资料来源:百度百科 - 考研数学二大纲

考研数学二历年真题怎么这么简单???

外星人
冬之华
李永乐的400题就是很难的,它里面每道题都涉及了N个方面,拐了N个弯,主要是锻炼你的综合知识的能力,做400题时,你的思维水平已经在潜移默化中得到提高了,而真题一般都只有一个弯最多两个,所以你做起真题来就简单很多。我是去年考的,当时做400题的时候大题我几乎一个都做不出来,150分的题大概能作出60分来,差点打击的都不想考了,后来考试前,拿了一套真题做了一下,发现简单好多,顿时又有了信心,最后考研成绩还行,110多,我已经很知足了,呵呵今年的题目很简单,但是计算量很大。因为我平时很少正儿八经的去做过套题,所以速度没有提上来,而且卡在第二个线性代数的题目无法自拔。以至于后面的概率论都没有时间做了。悲催。希望要考数学的学弟学妹们一定要好好做套题,真题。今年的选择题和就有雷同的。

2018考研数学二真题(完整版)

陈淳
穿墙术
去百度文库,查看完整内容>内容来自用户:文都教育世纪文都教育科技集团股份有限公司2018考研数学(二)真题(完整版)来源:文都教育一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.若lim(ex+ax2+bx)x2=1,则x®011,b=-1.21C.a=,b=1.22.下列函数中,在x=0处不可导的是A.a=A.f(x)=xsinx.C.f(x)=cosx.121D.a=-,b=1.2B.f(x)=xsinD.f(x)=cosB.a=-,b=-1.x.x.ì2-ax,x£-1,ïïìï-1,x<0,ï3.设函数f(x)=g(x)=x,-1<x<0,若f(x)+g(x)在R上连续,则ïî1,x³0,ïïïîx-b,x³0.A.a=3,b=1.C.a=-3,b=1.4.设函数f(x)在[0,1]上二阶可导,且B.a=3,b=2.D.a=-3,b=2.10f(x)dx0,则121D.当f"(x)0时,f()0.2B.当f"(x)0时,f()0.121C.当f'(x)0时,f()0.2A.当f'(x)0时,f()0.5.设M22(1x)21x22dx,Ndx,K(1cosx)dx,则2x1x2e2A.MNK.C.KMN.6.B.MKN.D.KNM.12x2x01dx2x2x(1xy)dydx0(1xy

2015考研数学二各题分值多少

杨子
变向上
试卷题型结构为:单项选择题选题 8小题,每题4分,共32分。填空题 6小题,每题4分,共24分。解答题(包括证明题) 9小题,共94分。试卷满分为150分,考试时间为180分钟。须使用数学二的招生专业:工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科专业。扩展资料命题原则:1、科学性与公平性原则。作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免过于广大考生来说过于专业和抽象难懂的内容。2、控制难易度的原则。考研数学试题要求以中等偏上题为主,考试及格率控制在30-40%,平均分(满分150分)控制在75分左右。3、控制题量的原则。考研数学试题的题量控制在20-22道之间(一般6道填空题,6道选择题,10道大题),保证考生基本能答完试题并有时间检查。数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其中高数6个,线性代数和概率论各2个。参考资料来源:百度百科——考研数学

考研考数二,具体考哪些,哪些章节?

文明
良耜
高等数学考点:第一章 函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章  一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章  一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第四章 多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章  常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数考点:第一章 行列式行列式的运算计算抽象矩阵的行列式第二章  矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的证命题第三章 向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定问量能否由向量组线性表示第四章 线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章 矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题第六章  二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念拓展资料:数学二形式与结构:(一)试卷满分及考试时间1.试卷满分为150分2.考试时间为180分钟。(二)答题方式1.答题方式为闭卷2.笔试。(三)试卷内容结构1.高等数学 78%2.线性代数 22%(四)卷题型结构1.试卷题型结构为:单项选择题 8小题,每题4分,共32分2.填空题 6小题,每题4分,共24分3.解答题(包括证明题) 9小题,共94分资料链接:百度百科--考研数学二

2018考研数学二真题

有头有尾
孰敢不轨
去百度文库,查看完整内容>内容来自用户:好读书不求甚解2018年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的.1(1)若lim(exax2bx)x21,则()x0(A)a1,b12(B)a1,b12(C)a1,b1(D)a1,b122(2)下列函数中,在x0处不可导的是()(A)fxxsinx(B)fxxsinx(C)fxcosx(D)fxcosx(3)设函数f(x)1,x01,x0,g(x)2ax,x1x,1x0,xb,x0若f(x)g(x)在R上连续,则()(A)a3,b1(B)a3,b2(C)a3,b1(D)a3,b2(4)设函数f(x)在[0,1]上二阶可导,且1f(x)dx0,则()0(A)当f(x)0时,f(1)02(B)当f(x)0时,f(1)02(C)当f(x)0时,f(1)02(D)当f(x)0时,f(1)02(5)设M2211x2x2dx,N221exxdx,K221cosxdx,则()(A)MNK(B)MKN(C)KMN(D)KNM(6)0dx2x2(1xy)dy

考研数学二有哪些常考题及基本考点汇总

不离于真
爱很怪
(一)考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理、洛必达法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值及最小值、弧微分、曲率的概念、曲率圆与曲率半径。(二)常考题型1.对导数定义的考查;2.导数和微分的计算(包括高阶导数);3.切线与法线的计算;4.对函数单调性的考查;5.求函数极值与拐点、渐近线的问题;6.对函数以及其导数函数相关性质的考查

如何评价2016考研数学二的题目

神秀
黄河谣
考试发完卷后,先做的是选择题,状态一般般,20分钟解决完选择题,其中有道线代题出的比较好,很有区分度,主要考查了矩阵相似的定义和基本运算和公式,其他的题都不太难,仅需要很少计算和推理,因为草稿纸有限,这些题目我都是在试题卷上完成的草稿。不太理解抱怨后面题太难的同学,实话说,选择题出的都很好,知识点考查得很全面,但是经典题都已经出烂了,除了那道线代题外,这次几乎没有原创题,我都能看到以前题目的影子。但无论怎样,考查的都是最基础最基本的知识,几乎全是定义定理的深刻理解。到了填空题,除了一道高阶导数那题,其它题也是几乎没难度,我失误就失误在死磕了一道计算量特别大求高阶导数的题,这道题也许会有简单算法,但我拿到这题想都没想,看了带有变限积分方程第一想法就是求导算出方程,之后再用莱布尼兹公式或者用函数的幂函数展开式的唯一性解决。但意外的是,求导后发现这是个一阶微分方程,用公式法解的时候计算量太大了,但我之前做的考研题这种计算量的考题很常见,所以目测是能算出来的,经过大概15分钟左右的奋战,求出了一个系数复杂、幂函数和一次函数混合的函数表达式,这根本不要用莱布尼兹和麦克劳林什么的啊,直接是能看出答案的,虽然我在答题卷上写上了答案,但心里没底,想再算一遍,一看时间,45分钟了,被迫之下只能继续。(后来对答案时发现这题算对了)但是因为这题导致突然紧张,后面的两道填空题都失误算错了,其中一道求变化速率的题,数是算对了,但忘记加系数V0,另外一道线代填空题太着急没有舍去一个不符合条件的解,最后我也是没时间检查,结果选择填空一共是错了那两道很容易的填空题。做完填空题,大概是已经过了49分钟,根据以往的经验来看,不算太差,还是有很大机会能答得不错。计算题前几题没什么说的,都能看到以前考题的影子,其中那道被积函数带有绝对值、关于变量x的定积分最经典,这道题考察了考生对于定积分和函数自变量的深刻理解,还是一道综合题,考察了分段函数求极值,知识点考察得很全面,命题的创新点也比较多,往年有类似的题,但都没这道好。另外的一道多元函数极值题也中规中矩,此题计算量不算大,这种类型的题做多了后就有经验,最后用判定法的时候分子上几乎都是0,所以没有太大的计算量。二重积分那题也是,不难,都是套路题,拿到一个积分题,必须先看对称性,然后竟然是简简单单的直坐标系积分,其中就用了一个积分公式,如果要是说公式记不熟和计算量大的考生真的要多做题了,张宇的八套卷和四套卷中没有一道二重积分题的计算是比这题简单的,你平时模拟的时候算对了吗?微分方程那道计算题确实不好算,但前几步还算简单,后面的时候有点复杂,这题我算到倒数第二步,时间不够,没算出最后答案。求侧面积和体积那道题计算量很大,公式用得熟练就没有太大问题,我算得很仔细,也费了一些时间,可能关键还是心里太紧张,生怕自己算错,每下一次笔都要检查好几遍。做到高数最后一题的时候还剩50分钟左右,最后一道高数题不难,关键你要知道什么是均值,均值具体定义我背不下来(可好像大纲了没要求这个公式吧)但我知道均值是在函数区间对函数积分再除以积分区间的长度,这个在我专业课运筹学库存管理一个模型证明的时候出现过,列出表达式后就简单了,有经验的考生会发现这是个变体形式的二重积分,整理一下,交换积分顺序,很容易就求出来了。可是考场上的我一直在看时间,很着急,因为根据以往经验做到线代只有40分钟这张卷子肯定考不好,我是用了一个稍微难想一点的方法解决这个计算的,分部积分法凑一次积分,合并、化简顺利解决。看了一下第二问,证明题,实则是让你用导数工具分析函数,不是很难,但因为时间原因,想快速解决线代后再做这道证明题,但最悲剧的事情出现了,今年的线代比去年难太多,综合难度几乎可以算得上是30年来最大的一年,不仅仅体现在公式定义把握上,还在于计算量上,加上高数的计算量,如果平时做我有信心能做的很不错,但考研我不敢,每算一步都仔仔细细,最后真的是很疲惫、心力憔悴。线代第一题中规中矩,时至今日,我都忘记这道很普通的题了,唯一的印象就是还是有些计算量的。第二道线代题也挺好的,往年是出在填空题上的,这种求矩阵的高阶次数,无外乎三种状况:第一种是先试着求几次,找下规律;第二种是拆矩阵,用莱布尼兹二项展开式;第三种是化为对角矩阵,用相似的理论做。看这道题的位置,再看看第二问,想都不用想,肯定考察的是矩阵相似对角化的知识,这些在我听张宇和李永乐线代课的时候,他们都讲过,张宇是分开讲的,李永乐讲的不够系统,当时我听完课后就下意识的把这三种情况总结到一起,其中相似对角化对于能相似对角化的矩阵是万能的,但考过试的都懂,相似对角化什么概念,求三个特征值,带入后再求三个特征向量,还要求特征向量拼成的逆矩阵,好吧,求!反正就是没有难度的计算,可我算了大概15分钟,算完了可时间也结束了。第二问就看了一眼,就打铃了,根据第一问的计算量,很可能是6+5分配。