欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学一和数学二有什么区别?都是什么专业考数一,什么专业考数二呢?

天钧败之
对物
考研数学针对不同专业的考生有不同的考试内容,我们在复习考研数学之前首先要搞清楚考研数学一二三的区别。

考研 数二考啥?难吗?

同乎无欲
敢不虚心
2009年考研数学大纲内容 数二高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:, 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.2009年考研数学大纲内容 数二线性代数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 考试要求1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.数二不考概率论,你可以参考一下。相对数1,3来说,数2比较简单

考研数学二买什么资料好

迷魂记
重生记
我今年考研,过来人建议你一定要好好看看历年真题,这是最有用的,尤其是最近几年;大家都是这样摸着石头过河的。有的人真题刷了三遍。 数学:一般用的教材是同济大学的微积分、线性代数和概率论。这些教材是基础,看完做完这基本教材,还需要看复习全书,李永乐和陈文灯的是大家选择比较多的。上面的做完了,时间充足可以做李永乐的660题,这主要是训练选择题和填空题,同时考研数学想取得高分,这块不能丢太多的分,不然很难拿高分。复习考研数学,历年真题是少不了的,要不停的做,做完了要分析总结做题思路和解题方法,这一点很关键的,真题一定要吃透。推荐张宇的《真题大全解》最后到了11月中旬了,可以买李永乐的经典400题做了,这个题的难度会高于真题,作为最后的模拟做一下。

考研数学二都考哪些??哪些不考

尸银
对争
考研数学二考试科目:只考高数(78%)和线代(22%) ,也就是不考概率。高等数学:同济六版高等数学中除了第七章微分方程考带*的伯努力方程外,其余带*号的都不考;所有”近似“的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算,矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。概率与数理统计:不考。扩展资料:全国硕士研究生统一招生考试(Unified National Graate Entrance Examination),简称“考研”。是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(部分专业通过全国联考的方式进行命题)。硕士研究生招生方式分为全日制和非全日制两种。培养模式分为学术型硕士和专业型硕士研究生两种。参考资料:百度百科_考研数学二大纲

考研 数学二 具体考什么内容

商君
砻谷纪
考研数学二的具体内容会因为地点、时间、政策等的变化而有所变化,但考试的大纲一般包括高等数学和线性代数。数二大纲:考试科目:高等数学、线性代数形式结构:1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。2、答题方式答题方式为闭卷、笔试。3、试卷内容结构高等数学 78%线性代数  22%4、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分高等数学(函数、极限、连续):考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数, 函数关系的建立 数列极限与函数极限的定义及其性质 ,函数的左极限和右极限 ,无穷小量和无穷大量的概念及其关系 ,无穷小量的性质及无穷小量的比较 ,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质。拓展资料:数三大纲:考试科目:微积分、线性代数、概率论与数理统计形式结构:试卷满分及考试时间试卷满分为150分,考试时间为180分钟.答题方式:答题方式为闭卷、笔试.试卷内容结构:微积分 56%线性代数 22%概率论与数理统计 22%试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分考研数学 百度百科

2017考研,请问考研数学二考什么?应该怎么样复习?

使物自喜
凌曙
  春季我们2017年考数学二的考生在这个阶段首先要明白考研数学二考什么。  一、关于考研数学二中的高等数学:  同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了;  二、关于线性代数  数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型;  三、数学二不考概率与数理统计  ▶全方位研究典型题型  对于数二的同学来说,需要做大量的试题。即使在初始阶段,数二的很多同学都在对典型题型进行研究,问题在于你如何研究它,我认为应该对典型题型进行全方位立体式的研究。面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。  做题的过程中,必须考虑为什么要用这几个定理,而不用那几个定理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法。  就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。学习数学二,重在做题,熟能生巧。对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。  ▶训练解答综合题  此外,还要初步进行解答综合题的训练。数学二的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。这也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。  同时要善于思考,归纳解题思路与方法。一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。思路有些许偏差,解题过程便千差万别。考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。  考生要在做题时巩固基础,在更高层次上把握和运用知识点。对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。  ▶做参考书上的题目  考研试题与教科书上的习题的不同点在于,前者是在对基本概念、基本定理、基本方法充分理解的基础上的综合应用,有较大的灵活性,往往一个命题覆盖多个内容,涉及到概念、直观背景、推理和计算等多种角度。因此一定要力争在解题思路上有所突破,要在打好基础的同时做大量的综合性练习题,并对试题多分析多归纳多总结,力求对常见考题类型、特点、思路有一个系统的把握。  解题训练最好按题型进行分类复习,对于任何一个同学而言,都可能有自己很擅长的某些类型的题,相反的,也有一些不太熟悉或者不会做的题型,这在复习的过程中也当有所侧重。  第一遍复习的时候,需要认真研究各种题型的求解思路和方法,做到心中有数,同时对自己的强项和薄弱环节有清楚的认识,第二遍复习的时候就可以有针对性地加强自己不擅长的题型的练习了,经过这样两边的系统梳理,相信解题能力一定会有飞跃性的提高。

请问考研数学一难吗?

红盖头
鬼遮眼
考研数学具体有数学一、数学二、数学三,下面我们先从数学一说起,数学一的考试科目是高等数学、线性代数、概率论与数理统计三门课程,其中高等数学的考试内容为:1、函数、极限、连续;2、一元函数微分学;3、一元函数积分学;4、向量代数和空间解析几何;5、多元函数微分学;6、多元函数积分学;7、无穷级数;8、常微分方程。线性代数的考试内容为:1、行列式;2、矩阵;3、向量;4、线性方程组;5、矩阵的特征值和特征向量;6、二次型。概率论与数理统计初步的考试内容为:1、古典概率;2、随机变量及其分布;3、多维随机变量及其分布;4、随机变量的数字特征;5、大数定律和中心极限定理;6、数理统计的基本概念;7、参数估计;8、假设检验。上面呢是数学一的考试内容,那数学二都考些什么呢,它只考高等数学和线性代数两门课程,其中高等数学的考试内容为:1、函数、极限、连续;2、一元函数微分学;3、一元函数积分学;4、多元函数微积分学;5、常微分方程。数学二相对数学一内容少了很多部分,主要体现在高数上,数学二不考察向量代数和空间解析几何、无穷级数,而且多元函数里没有三重积分、曲线曲面积分,所以考数学二高数部分内容相对数学一少了很多!

考研不需要考数学的专业有哪些?

张叔
超高频
数学是很多学生的心病,从小到大都是这样,但是不同的阶段数学表现又不一样,考研究生的时候数学是一大难题,考数学的专业基本上难度都低不了。有些专业是不考数学的,人们自然就很关注这些专业,比如哲学医学,还有专业类硕士,他们就是不考数学的。考研究生的时候考的那个数学和高中的数学是完全不一样的,它是那种特别抽象的东西,最主要的三个部分就是高等数学概率论线性代数高的数学占的分数,比值是最大的难度也是最大的高能数学,最重要的篇幅就是微积分一元二元微分积分,这个是占最主要的地位也是难度最高的,可以说高等数学,你把微积分攻克了,算的明白了,那基本上考研数学中一半以上的分数你都已经拿到了。有一些专业不考数学,自然人们就很关注他,觉得这是一个非常不错的改变机会,因为数学这个东西到了考研的这个阶段,他真的就不是单纯凭个人的努力就可以攻克的了,有的时候真的得讲究一点灵感,你要是死或学都学不明白,建议你趁早放弃。如果说你看老师的一些讲解视频,看一些答案,你还知道为什么这么做,那证明你还有改变的机会,还可以抢救一下,因为这些东西确实特别抽象,那些不考数学的专业他们就把难度的集中在专业课上,比如医学哲学,他们的专业课难度很高,毕竟总是要有一个筛选的手段的。数学确实难度比较高,但是高等数学和初等数学又不一样,就算是你高中的时候数学学的很好,到了大学高等数学的学习也不见得就会绝对顺利,只能说高等数学的学习与初等数学有一定的联系,会给你提供一定的便利性,但是这不是绝对的,而且也要讲一点灵感和天分,你要是突然之间通窍了,你觉得高等数学不也就这么回事儿吗?那你这个数学基本就没有问题了。

考研高等数学一与二有什么区别

假兄弟
山无蹊隧
1、对象不同:数学一主要对应理工科;数学二主要对应农学;2、考试科目不同:数学一包括:高等数学、线性代数、概率论与数理统计,考得比较全面,而且题目相对偏难。数学二包括:高等数学、线性代数。3、适用专业不同:数学一是对数学要求较高的理工类专业的,适用专业:工学门类、管理学门类中管理科学与工程一级学科中所有的二级学科等专业。数学二是对于数学要求要低一些的农、林、地、矿、油等等专业的,适用专业:工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科;工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较低的二级学科等专业。4、各自领域不同:数学二不考概率,数学一的内容最多,也最难,难易程度是数学一、数学二的顺序来的。扩展资料考研解答技巧考研数学解答题主要考查综合运用知识的能力、逻辑推理能力、空间想象能力以及分析、解决实际问题的能力,包括计算题、证明题及应用题等,综合性较强,但也有部分题目用初等解法就可作答。跨考教育数学教研室李老师表示,解答题解题思路灵活多样,答案有时并不唯一,这就要求同学们不仅会做题,更要能摸清命题人的考查意图,选择最适合的方法进行解答。结合教材和前一年的大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好。参考资料:百度百科-考研数学