欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学二要考哪些

流血百里
恐怖塔
2006年全国硕士研究生入学考试 数学二考试大纲 数 学 二 [考试科目] 高等数学、线性代数 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求 1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念。 5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6. 掌握极限的性质及四则运算法则 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限. 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容。 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的n阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。 5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用. 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分 定积分的应用 新增知识点:增加了“用定积分表达和计算质心” 考试要求 1.理解原函数概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式及简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式. 5.了解广义积分的概念,会计算广义积分. 6.了解定积分的近似计算法. 7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数、隐函数求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义。 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。 五、常微分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的方程及一阶线性微分方程的解法,会解齐次微分方程。 3.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')y=f''(y,y'). 4.理解二阶线性微分方程解的性质及解的结构定理. 5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 7.会用微分方程解决一些简单的应用问题.线性代数 一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、对称矩阵、三角矩阵、反对称矩阵,以及它们的性质. 2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式 3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 三、向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 新增知识点:向量的内积线性无关向量组的正交规范化方法 考试要求 1.理解n维向量的概念、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系. 5.了解内积的概念,掌握线性无关向量组的正交规范化的施密特(Schmidt)方法” 四、线性方程组 考试内容 线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 考试要求 l.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。 4.理解非齐次线性方程组解的结构及通解的概念. 5.会用初等行变换求解线性方程组. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵” 3.理解实对称矩阵地特征值和特征向量的性质”考试要求的变化:1.将“2.了解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”调整为“2.理解相似矩阵地概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵”2.将“3.了解实对称矩阵地特征值和特征向量的性质”调整为“3.理解实对称矩阵地特征值和特征向量的性质”试卷结构 (一)题分及考试时间 试卷满分为150分,考试时间为180分钟。 (二)内容比例 高等教学 约80% 线性代数 约20% (三)题型比例 填空题与选择题 约40% 解答题(包括证明题)约60%。数学二,是报考农学的学生考(还有专硕),考试内容只有高等数学和线性代数,但是高等数学中删去的较多,是考试内容最少的

考研数学二考那写部分啊

告解室
得其随成
2011年考研数学二大纲考试科目  高等数学、线性代数考试形式和试卷结构  1、试卷满分及考试时间   试卷满分为150分,考试时间为180分钟。   2、答题方式   答题方式为闭卷、笔试。   3、试卷内容结构   高等数学 78%   线性代数 22%   4、试卷题型结构   试卷题型结构为:   单项选择题选题 8小题,每题4分,共32分   填空题 6小题,每题4分,共24分   解答题(包括证明题) 9小题,共94分考试内容之高等数学  函数、极限、连续   考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:   函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质   考试要求   1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.   2. 了解函数的有界性、单调性、周期性和奇偶性.   3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念   4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.   5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.   6. 掌握极限的性质及四则运算法则   7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.   8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.   9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.   10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.   一元函数微分学   考试要求   1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.   2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.   3. 了解高阶导数的概念,会求简单函数的高阶导数.   4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.   5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.   6. 掌握用洛必达法则求未定式极限的方法.   7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.   8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.   9. 了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.   一元函数积分学   考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用   考试要求   1. 理解原函数的概念,理解不定积分和定积分的概念.   2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.   3. 会求有理函数、三角函数有理式和简单无理函数的积分.   4. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.   5. 了解反常积分的概念,会计算反常积分.   6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.   多元函数微积分学   考试要求   1. 了解多元函数的概念,了解二元函数的几何意义.   2. 了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.   3. 了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.   4. 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.   5. 了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).   常微分方程   考试内容:常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用   考试要求   1. 了解微分方程及其阶、解、通解、初始条件和特解等概念.   2. 掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程   3. 会用降阶法解下列形式的微分方程: , 和 .   4. 理解二阶线性微分方程解的性质及解的结构定理.   5. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.   6. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.   7. 会用微分方程解决一些简单的应用问题.考试内容之线性代数  行列式   考试内容:行列式的概念和基本性质 行列式按行(列)展开定理   考试要求   1.了解行列式的概念,掌握行列式的性质.   2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.   矩阵   考试内容:矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算   考试要求   1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.   2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.   3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.   4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.   向量   考试内容:向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法   考试要求   1.理解n维向量、向量的线性组合与线性表示的概念.   2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.   3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.   4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系   5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.   线性方程组   考试内容:线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解   考试要求   1.会用克莱姆法则.   2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.   3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.   4.理解非齐次线性方程组的解的结构及通解的概念.   5.会用初等行变换求解线性方程组.   矩阵的特征值和特征向量   考试内容:矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵   考试要求   1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.   2.理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.   3.理解实对称矩阵的特征值和特征向量的性质.   二次型   考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性   考试要求   1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.   2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.   3.理解正定二次型、正定矩阵的概念,并掌握其判别法.每年都有大纲的,可以参考去年的!

考研数学一和数学二有什么区别?

而民不争
各复其根
本视频依据最新的考研大纲,从高数角度解析了考研数学在不同类别考生之间的区别,包含内容的区别,考试难度的区别等。理清楚这些区别后便于考生在考研数学复习中找到明确的方向。

考研数学二都考哪些??哪些不考

玄览
秦风
考研数学二考试科目:只考高数(78%)和线代(22%) ,也就是不考概率。高等数学:同济六版高等数学中除了第七章微分方程考带*的伯努力方程外,其余带*号的都不考;所有”近似“的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算,矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。概率与数理统计:不考。扩展资料:全国硕士研究生统一招生考试(Unified National Graate Entrance Examination),简称“考研”。是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。思想政治理论、外国语、大学数学等公共科目由全国统一命题,专业课主要由各招生单位自行命题(部分专业通过全国联考的方式进行命题)。硕士研究生招生方式分为全日制和非全日制两种。培养模式分为学术型硕士和专业型硕士研究生两种。参考资料:百度百科_考研数学二大纲

研究生考试中数学二主要考试内容包含哪些?

打破者
蓝纸鹤
1、考研科目数学二的主要内容:(1)高数:极限、导数与导数的应用、中值定理、不定积分、定积分、定积分的应用、多元函数微分学、二重积分、常微分方程。(2)线代:行列式、矩阵、向量组的相关性与秩、线性方程组、特征值和特征向量。2、考数二的一般都是专硕,当然也有一些专硕的是考数一的。纺织科学与工程、轻工技术与工程、农业工程、林业工程、控制工程、集成电路、通信工程等等。扩展资料:1、数一要考的内容有:高等数学:函数、极限、连续、一元函数微积分学、向量代数与空间几何、多元函数微积分学、级数、常微分方程。线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。概率论与数理统计:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验。对于考数一的专业也是和数二、数三不同的。大部分考数一的都是学术型专业。力学、机械工程、光学工程、仪器科学与技术、动力工程、电气工程、控制科学与工程等等专业。2、数三要考的内容有:高数:函数、连续、一元函数微积分学、多元函数微积分学、级数、常微分方程和差分方程线代:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。概率:随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、样本及抽样分布、参数估计、假设检验考数三的专业一般都是偏向文科性质的专业,经济类管理类较多。统计学、数量经济学、国民经济学、财政学、金融学、企业管理、技术经济及管理等等专业。参考资料来源:百度百科 - 考研数学二大纲

考研数学二要考什么

今敏
羲和
这要看你考哪年的了,每一年的考研大纲都不一样,这个没有准确的答案,如果是在准备2010年考研,那么大纲现在还没有下来,估计在今年7月份才会出大纲,建议你去买本09年的考研数学大纲仔细研究一下要求的内容,考研大纲每一年数学的变化是最小的,按照上一年的大纲复习就行。考试大纲我有电子版的 http://ecation.163.com/edit/000918/000918_58521.html http://ecation.163.com/edit/000918/000918_58522.html http://ecation.163.com/edit/000918/000918_58523.html http://ecation.163.com/edit/000918/000918_58524.html 赶快复制 要不就没有了。

考研数学二答题技巧

货财弗争
您好!很高兴为您解答!考研数学二答题技巧(1)确定做题顺序。在做题顺序上可以采用填空、计算、选择、证明的顺序。因为选择题的分数要相对的少一些,但他们一般对基础知识要求较高,选项迷惑性大有时需要花好多时间去分析也难以取舍,而且有些选择题的计算量也是很大的,如果在开始做题时就感觉不顺手花的时间太长,这样会影响考试情绪。证明题考的是严密的逻辑推理,难度也比较大。把这两道题放在最后做比较好,开始先做简单的。在考试时,先通观整个试题,明确哪些分数是必得的。哪些是可能得到的,哪些是根本得不到的,再采取不同的对应方式,才能镇定自如,进退有据,最终从总体上获胜。  (2)做选择题的时候,可以巧妙的运用图示法和赋值法。这两种方法很有效。平时用得人很多,考试时尽量不要留有空白,就算是不会的题也要写一些相关的内容得一点“步骤分”。求解单项选择题一般有以下几种方法:推演法:它适用于题干中给出的条件是解析式子。图示法:它适用于题干中给出的函数具有某种特性,,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。举反例排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函数的情况。逆推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做逆推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。赋值法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。参考资料:文都资讯网

考研数学二考什么?

卢沟桥
莫觉莫悟
  数学二:包含线代,高数。适用的学科为:  1.工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业.  2.工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较低的二级学科、专业.  数学2是对于数学要求要低一些的农、林、地、矿、油等等专业的;数二不考概论,而且题目较数一容易  2012考研英语红宝书:  He soon received promotion, for his superiors realized that he was a man of  considerable .  [A] future  [B] possibility  [C] ability  答:句意:他很快就得到了提升,因为他的上司们意识到他是一个很有才能的人。future 首先是不与 considerable(大量的)搭配,其次,一个有前途的人可译为 a man with a future。possibility(可能性)不能跟在 of 后面修饰人,但可以说:He has future possibilities. 他大有前途。opportunity(机会)也不跟在 of 后面作后置定语修饰人。

考研一定要考数学吗?

东北部
嗟乎
不一定。有的专业考研不考数学,考两门专业课。考研不用考数学的专业有法律硕士、工商管理硕士、汉语言文学、历史、哲学、新闻学、传播学、播音主持、采访编辑、艺术类、图书管理学、劳动与社会保障、法学、社会学、服装设计、工业设计等等。扩展资料:考研需要考数学的专业:(1)须使用数学一的招生专业:工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程等等。(2)须使用数学二的招生专业:工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。考研数学基础阶段,吃透课本,掌握大纲结合本科教材和前一年的大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好。考研初期复习要全面夯实基础,重点弥补薄弱环节。考研数学复习具有基础性和长期性等特点,在考研初期复习阶段考研数学初期复习要排在首位。数学基础复习就是这样,读书,做题,思考缺一不可。读书是前提,是基础,读懂书才有可能做对题目。做题是关键,是目的。只有会做题,做对题目,快速做题才能应付考试,达到目的。思考是为了更有效的读书和做题。参考资料:百度百科——考研数学