欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

统计分析的三大主要内容

流亡者
非役人也
统计分析是统计工作的最后阶段,具体内容如下:1、它将大量通过调查和整理的统汁资料,进行科学分析,找出发展规律;2、发现企业管理和计划执行中的问题和薄弱环节,并找出其原因;3、提出符合实际的解决问题的办法或建议。通过对资料的分析,最后会形成统计分析报告。统计分析报告是统计分析研究过程中所形成的论点、论据、结论的集中表现,它乃是运用统计资料和统计方法、数字与文字相结合,对客观事物进行分析研究结果的表现。 统计分析结果可以通过表格式、图形式和文章式等多种形式表现出来。文章式的主要形式是统计分析报告。它是全部表现形式中最完善的形式。扩展资料:统计分析是指运用统计方法及与分析对象有关的知识,从定量与定性的结合上进行的研究活动。它是继统计设计、统计调查、统计整理之后的一项十分重要的工作,是在前几个阶段工作的基础上通过分析从而达到对研究对象更为深刻的认识。它又是在一定的选题下,集分析方案的设计、资料的搜集和整理而展开的研究活动。系统、完善的资料是统计分析的必要条件。运用统计方法、定量与定性的结合是统计分析的重要特征。随着统计方法的普及,不仅统计工作者可以搞统计分析,各行各业的工作者都可以运用统计方法进行统计分析。只将统计工作者参与的分析活动称为统计分析的说法严格说来是不正确的。提供高质量、准确而又及时的统计数据和高层次、有一定深度、广度的统计分析报告是统计分析的产品。从一定意义上讲,提供高水平的统计分析报告是统计数据经过深加工的最终产品。统计分析法的优点:方法简单,工作量小。统计分析法的缺点:定额的准确性差,可靠性差。一是对历史统计数据的完整性和准确性要求高,否则制定的标准没有任何意义;二是统计数据分析方法选择不当会严重影响标准的科学性;三是统计资料只反映历史的情况而不反映现实条件的变化对标准的影响;四是利用本企业的历史性统计资料为某项工作确定标准,可能低于同行业的先进水平,甚至是平均水平。参考资料:百度百科——统计分析

求论文(1)应用T检验方法进行数据统计分析的研究。

夜郎
皇天
结合日常工作实践,做出某一方面的数据统计分析,得出相应的研究结果,并根据研究结果撰写论文。(二)论文选题及内容要求1、论文选题限定在教学课件讲授内容中的如下知识点: (1)应用T检验方法进行数据统计分析的研究。(2)应用方差分析方法进行数据统计分析的研究。(3)应用相关分析方法进行数据统计分析的研究。(4)应用回归方法进行数据统计分析的研究。2、论文结构包括:问题提出,研究意义,实验过程,使用的数据统计分析方法,结论分析等5部分。3、研究中使用的数据一律采用考生自己虚拟的数据,只注重研究问题的价值和意义,为什么选择这样的研究方法和结论解释。4、字数限制: 2000字左右。 我来回答匿名本回答被提问者和网友采纳

统计学的研究方法有哪些

彼其于世
花君
统计是要分析数据的,但首先需要考察的是,数据的是否合适,实验采集的数据是否符合分析的目的和要求。  所谓实验设计就是指设计实验的合理程序,使得收集得到的数据符合统计分析方法的要求,以便得出有效的客观的结论。它主要适用于自然科学研究和工程技术领域的统计数据搜集。  实验设计要遵循的三个基本原则:  (1)重复性原则:即允许在相同条件下重复多次实验。好处是:其一可以获得更加精确的有效估计量;其二,可以获得实验误差的估计量。这些都是提高估计精度或缩小误差范围所需要的。  (2)随机化原则:是指在实验设计中,对实验对象的分配和实验次序都是随机安排的。是实验设计的重要原则。  (3)区组化原则:即利用类型分组技术,对实验对象按有关标志顺序排除,然后依次将各单位随机地分配到各处理组,使各处理组组内标志值的差异相对扩大,而处理组组间的差异相对缩小,这种实验设计安排称为随机区组设计。  2.大量观察  大量观察法是统计学所特有的方法。所谓大量观察法,是指对所研究的事物的全部或足够数量进行观察的方法。统计描述  统计描述是指对由实验或调查而得到的数据进行登记、审核、整理、归类、计算出各种能反映总体数量特征的综合指标,并加以分析,从中抽出有用的信息,用表格或图像把它表示出来。是统计研究的基础。它通过对分散无序的原始资料的整理归纳,运用分组法和综合指标法得到现象总体的数量特征,揭露客观事物内在数量规律性,达到认识的目的。

几种主流数据统计研究软件优缺点体会

舒璘
追之
数据统计分析软件是绝大部分学科研究者必须掌握的工具。下表中列出了学习和研究过程中对于几种主流数据分析和统计软件的优缺点总结体会,其中一些运用较自如,有的还属“没吃过猪肉,只见猪跑路”阶段。 软件名优势缺点常见应用领域定位与前景Matlab功能全面;算法工具箱;统计图形;需编程基础;统计学功能不完善;工科;自然科学;数值计算老大,或能一统江湖SPSS易用;统计学功能全面;版本功能升级快;不灵活;运行效率不高;社会科学;统计学入门级软件SAS统计学功能强大;大样本分析;需编程; 社会科学;统计学;理科;进阶的统计学软件Stata易用;类似于SPSS; 数学;自然科学; Excel极其易用;统计图形;运行效率低;样本量限制;统计学功能不完善;商务运用小样本数据初步分析R免费;统计图形;统计学功能; 数学;统计学;经济学; Origin优秀的统计图形;版本功能升级快;统计学功能不完善; 统计图形绘制老大,或能一统江湖注:(1)空白不代表没有,只是不知该怎么描述。(2)Origin实际上并不完全算是统计分析软件,其统计功能正在不断增添中,但已经很多研究者直接使用其作为统计分析工具。 以上仅是个人肤浅体会,望斧正、补充。一点建议是,研究不应为工具所累。纯熟一种,熟悉两种,知道三种即可。灵活运用,相互补充。以研究问题选择工具,而不是工具或方法导向式进行研究。也不建议耗费过多时间专门学习工具,而应以研究题目为驱动,实践中掌握,熟能生巧。精习一种软件后,自当触类旁通。掌握学习方法后,定会无师自通。分析化学 仪器分析 红外光谱

应用方差分析方法进行数据统计分析的研究 研究意义 实验过程

德之失也
德无不容
我是没看懂

调查问卷的数据分析 分析方法求指导。写论文的研究方法 不懂统计,

不言则齐
不形之形
要做某个因素对另一个因素的影响,可以做差异分析,比如不同组对象的某个指标差异,最好是做回归分析。(调查问卷SPSS数据统计分析专业人士 南心网 提供)

应用回归方法进行数据统计分析的研究

固不待物
莫动则平
书上能找到的

数理统计学是研究怎样有效的收集整理数据和分析

不能下人
其名高明
“社会统计学与数理统计学的统一”理论的重大意义王见定教授指出:社会统计学描述的是变量,数理统计学描述的是随机变量,而变量和随机变量是两个既有区别又有联系,且在一定条件下可以相互转化的数学概念。王见定教授的这一论述在数学上就是一个巨大的发现。 我们知道“变量”的概念是17世纪由著名数学家笛卡尔首先提出,而“随机变量”的概念是20世纪30年代以后由苏联学者首先提出,两个概念的提出相差3个世纪。截至到王见定教授,世界上还没有第二个人提出变量和随机变量两者的联系、区别以及相互的转化。我们知道变量的提出造就了一系列的函数论、方程论、微积分等重大数学学科的产生和发展;而随机变量的提出则奠定了概率论和数理统计等学科的理论基础和促进了它们的蓬勃发展。可见变量、随机变量概念的提出其价值何等重大,从而把王见定教授在世界上首次提出变量、随机变量的联系、区别以及相互的转化的意义称为巨大、也就不视为过。 下面我们回到:“社会统计学和数理统计学的统一”理论上来。王见定教授指出社会统计学描述的是变量,数理统计学描述的是随机变量,这样王见定教授准确地界定了社会统计学与数理统计学各自研究的范围,以及在一定条件下可以相互转化的关系,这是对统计学的最大贡献。它结束了近400年来几十种甚至上百种以上五花八门种类的统计学混战局面,使它们回到正确的轨道上来。 由于变量不断地出现且永远地继续下去,所以社会统计学不仅不会消亡,而且会不断发展状大。当然数理统计学也会由于随机变量的不断出现同样发展状大。但是,对随机变量的研究一般来说比对变量的研究复杂的多,而且直到今天数理统计的研究尚处在较低的水平,且使用起来比较复杂;再从长远的研究来看,对随机变量的研究最终会逐步转化为对变量的研究,这与我们通常研究复杂问题转化为若干简单问题的研究道理是一样的。既然社会统计学描述的是变量,而变量描述的范围是极其宽广的,绝非某些数理统计学者所云:社会统计学只作简单的加、减、乘、除。从理论上讲,社会统计学应该复盖除数理统计学之外的绝大多数数学学科的运作。所以王见定教授提出的:“社会统计学与数理统计学统一”理论,从根本上纠正了统计学界长期存在的低估社会统计学的错误学说,并从理论上和应用上论证了社会统计学的广阔前景。

统计学中数据分析的依据和方法有哪些

十日而问
樊须
统计学:通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考统计学基本理论研究有:概率极限理论及其在统计中应用、树形概率、Banach空间概率、随机PDE’S、泊松逼近、随机网络、马尔科夫过程及场论、马尔科夫收敛率、布朗运动与偏微分方程、空间分支总体的极限、大的偏差与随机中数、序贯分析和时序分析中的交叉界限问题、马尔科夫过程与狄利克雷表的一一对应关系、函数估计中的中心极限定理、极限定理的稳定性问题、因果关系与统计推断、预测推断、网络推断、似然、M——估计量与最大似然估计、参数模型中的精确逼近、非参数估计中的自适应方法、多元分析中的新内容、时间序列理论与应用、非线性时间序列、时间序列中确定模型与随机模型比较、极值统计、贝叶斯计算、变点分析、对随机PDE’S的估计、测度值的处理、函数数据统计分析