欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学二范围(同济第六版)

敲门
1、考研数学二只考高等数学和线性代数,概率和数理统计不考。2、具体情况:(1)高等数学(分值比例占总分78%)同济六版高等数学,除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面不考了。(2)线性代数(分值比例占总分22%)同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。扩展资料:考研数学二大纲之高等数学一、函数、极限、连续1、考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形;初等函数函数关系的建立数列极限与函数极限的定义及其性质;函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念;函数间断点的类型 初等函数的连续性;闭区间上连续函数的性质。2、考试要求(1)、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。(2)、了解函数的有界性、单调性、周期性和奇偶性。(3)、理解复合函数及分段函数的概念了解反函数及隐函数的概念。(4)、掌握基本初等函数的性质及其图形,了解初等函数的概念。(5)、 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。(6)、掌握极限的性质及四则运算法则。(7)、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。(8)、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。(9)、 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。(10)、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。二、一元函数微分1、考试要求(1)、 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。(2)、 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。(3)、了解高阶导数的概念,会求简单函数的高阶导数。(4)、 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。(5)、 理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理。(6)、掌握用洛必达法则求未定式极限的方法。(7)、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。(8)、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当 f''(x)>=0时,f(x)的图形是凹的;当f''(x)<=0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。(9)、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。三、一元函数积分1、考试内容原函数和不定积分的概念;不定积分的基本性质 基本积分公式定积分的概念和基本性质;定积分中值定理积分上限的函数及其导数;牛顿-莱布尼茨(Newton-Leibniz)公式;不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分 定积分的应用2、考试要求(1)、理解原函数的概念,理解不定积分和定积分的概念。(2)、 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。(3)、 会求有理函数、三角函数有理式和简单无理函数的积分。(4)、理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。(5)、了解反常积分的概念,会计算反常积分。(6)、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。四、多元函数微积分学1、考试要求(1)、 了解多元函数的概念,了解二元函数的几何意义。(2)、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。(3)、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。(4)、 了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题.(5)、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程1、考试内容常微分方程的基本概念;变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的简单应用。2、考试要求(1)、了解微分方程及其阶、解、通解、初始条件和特解等概念。(2)、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程。(3)、会用降阶法解微分方程。(4)、理解二阶线性微分方程解的性质及解的结构定理。(5)、 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。(6)、 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。(7)、会用微分方程解决一些简单的应用问题。考研数学二大纲之线性代数一、行列式1、考试内容行列式的概念和基本性质 行列式按行(列)展开定理2、考试要求(1)、了解行列式的概念,掌握行列式的性质.(2)、会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵1、考试内容矩阵的概念;矩阵的线性运算;矩阵的乘法;方阵的幂;方阵乘积的行列式;矩阵的转置;逆矩阵的概念和性质;矩阵可逆的充分必要条件;伴随矩阵矩阵的初等变换;初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算。2、考试要求(1)、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.(2)、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.(3)、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.(4)、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.(5)、了解分块矩阵及其运算.三、向量1、考试内容向量的概念;向量的线性组合和线性;表示向量组的线性相关与线性无关;向量组的极大线性无关组等价向量组;向量组的秩;向量组的秩与矩阵的秩之间的关系;向量的内积线性;无关向量组的正交规范化方法2、考试要求(1)、解n维向量、向量的线性组合与线性表示的概念.(2)、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.(3)、了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.(4)、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系(5)、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组1、考试内容:线性方程组的克莱姆(Cramer)法则;齐次线性方程组有非零解的充分必要条件;非齐次线性方程组有解的充分必要条件;线性方程组解的性质和解的结构;齐次线性方程组的基础解系和通解;非齐次线性方程组的通解。2、考试要求(1)、会用克莱姆法则。(2)、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。(3)、理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法。(4)、理解非齐次线性方程组的解的结构及通解的概念。(5)、会用初等行变换求解线性方程组。五、矩阵的特征值和特征向量1、考试内容矩阵的特征值和特征向量的概念;性质相似矩阵的概念及性质;矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值;特征向量及其相似对角矩阵。2、考试要求(1)、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。(2)、理解矩阵相似的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵。(3)、理解实对称矩阵的特征值和特征向量的性质。六、二次型1、考试内容二次型及其矩阵;表示合同变换与合同矩阵二次型的秩惯性定理;二次型的标准形和规范形;用正交变换和配方法化二次型为标准形;二次型及其矩阵的正定性。2、考试要求(1)、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念。(2)、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。(3)、理解正定二次型、正定矩阵的概念,并掌握其判别法。参考资料:百度百科-考研数学二大纲

考研数学有那些范围啊

美人局
俱诵墨经
考研数学分为数一、数二、数三,因考研专业而异。一、数一大纲:1、考试科目:高等数学、线性代数、概率论与数理统计2、形式结构:(1)试卷满分及考试时间试卷满分为150分,考试时间为180分钟.(2)答题方式答题方式为闭卷、笔试.(3)试卷内容结构高等数学  56%线性代数  22%概率论与数理统计22%(4)试卷题型结构为:单选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分二、数二大纲:1、考试科目:高等数学、线性代数2、形式结构(1)试卷满分及考试时间试卷满分为150分,考试时间为180分钟。(2)答题方式答题方式为闭卷、笔试。(3)试卷内容结构高等数学 78%线性代数  22%(4)试卷题型结构:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分三、数三大纲:1、考试科目:微积分、线性代数、概率论与数理统计2、形式结构:(1)试卷满分及考试时间试卷满分为150分,考试时间为180分钟.(2)答题方式答题方式为闭卷、笔试.(3)试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%(4)试卷题型结构单项选择题选题8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分扩展资料:考研数学命题原则:1、科学性与公平性原则作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免过于广大考生来说过于专业和抽象难懂的内容。2、覆盖全面的原则考研数学试题的内容要求涵盖所有考纲所要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。3、控制难易度的原则考研数学试题要求以中等偏上题为主,考试及格率控制在30-40%,平均分(满分150分)控制在75分左右。3、控制题量的原则考研数学试题的题量控制在20-22道之间(一般6道填空题,6道选择题,10道大题),保证考生基本能答完试题并有时间检查。数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其中高数6个,线性代数和概率论各2个。参考资料来源:百度百科 - 考研数学

求考研数学二线性代数考试范围~

桓宽
埃迪森
2017年 硕士研究生入学统一考试数学考试大纲数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 约78%线性代数 约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学(略)线性代数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算. 三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

考研数二线性代数用哪本教材?考试范围是什么?

食以刍叔
寂乎若清
自我感觉同济的比较好,讲得比较细,容易懂,线代最后一章考研不考,就考前五章的内容你看一下近10年的考研数二的线性代数题目及详细解答(http://wenku..com/view/13dde229915f804d2b16c124.html),就知道线代哪些内容是不考了。至于教材,没有太多的限定。Good Luck!

考研数学一的线性代数的全部考试范围。

闻所未闻
大心
线性代数一、行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理考试要求:1、了解行列式的概念,掌握行列式的性质。2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。二、矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵矩阵的秩,矩阵的等价,分块矩阵及其运算。考试要求1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质。2、理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。3、理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。4、了解分块矩阵及其运算。三、向量考试内容向量的概念,向量的线性组合与线性表示,向量组的线性相关与线性无关,向量组的极大线性无关组等价向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量空间及其相关概念,维向量空间的基变换和坐标变换,过渡矩阵,向量的内积,线性无关向量组的正交规范化方法,规范正交基,正交矩阵及其性质。考试要求1、理解 维向量、向量的线性组合与线性表示的概念。2、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法。3、理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系。5、了解 维向量空间、子空间、基底、维数、坐标等概念。6、了解基变换和坐标变换公式,会求过渡矩阵。7、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。8、了解规范正交基、正交矩阵的概念以及它们的性质。四、线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件解空间,非齐次线性方程组的通解。考试要求1、会用克莱姆法则。2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。3、理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。4、理解非齐次线性方程组解的结构及通解的概念。5、掌握用初等行变换求解线性方程组的方法。五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质,相似变换、相似矩阵的概念及性质。考试要求1、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。2、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。3、掌握实对称矩阵的特征值和特征向量的性质。六、二次型考试内容:二次型及其矩阵表示,合同变换与合同矩阵二次型的秩,惯性定理,二次型的标准形和规范形,用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性。考试要求1、掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理。2、掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形。3、理解正定二次型、正定矩阵的概念,并掌握其判别法。扩展资料命题原则科学性与公平性原则作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免过于广大考生来说过于专业和抽象难懂的内容。覆盖全面的原则考研数学试题的内容要求涵盖所有考纲所要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。控制难易度的原则考研数学试题要求以中等偏上题为主,考试及格率控制在30-40%,平均分(满分150分)控制在75分左右。控制题量的原则考研数学试题的题量控制在20-22道之间(一般6道填空题,6道选择题,10道大题),保证考生基本能答完试题并有时间检查。数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其中高数6个,线性代数和概率论各2个。参考资料来源:百度百科-考研数学

请问考研数二考什么?有哪些参考书?

三浦
万川归之
考研数学二只考高等数学和线性代数,概率和数理统计不考。数学二(高等数学,分值比例占78%)同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考。所有近似的问题都不考;第四章不定积分不考积分表的使用。不考第八章空间解析几何与向量代数,除去第九章后面内容不考。数学二(线性代数,分值比例占22%)同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。考研数学参考书:复习初期:看课本,结合《李永乐考研数学复习全书(数二)》。复习中期:做历年真题,结合《李永乐400题》。其他考研数学参考书:《金榜图书 李永乐·王式安唯一考研数学系列》《张宇考研数学系列丛书:张宇考研数学题源探析经》《张宇考研数学题源探析经典1000题》《李永乐·王式安唯一考研数》等。扩展资料考研数学中线性代数的复习线性代数相对于大家更为熟悉的高数来说,其实是比较容易的,其计算技巧相对较少,而且常考的题型也相对固定。该科目有5道题:2个选择、1个填空、2道解答题。从近十年考研数学真题来看,选择题和填空题多数情况下是考查知识点综合性较小,经常考如行列式计算、矩阵初等变换、向量组线性相关(无关)、线性方程组的解等,难度较低。而对两个解答题的考查,基本上都是多个知识点的综合,如矩阵的特征值和特征向量、矩阵对角化、二次型等知识点的综合运用,方法很常规,有时需要一定的技巧。只要同学们平时知识掌握得牢固,线性代数基本不会丢分。参考资料来源:中国研究生招生信息网官网-网报公告

考研数一数二数三的区别

甫田
闯入者
一、科目考试区别:1、线性代数:数学一、二、三均考察线性代数这门学科,而且所占比例均为22%,从历年的考试大纲来看,数一、二、三对线性代数部分的考察区别不是很大,不同的是数一的大纲中多了向量空间部分的知识。2、概率论与数理统计:数学二不考察,数学一与数学三均占22%,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件。3.高等数学:数学一、二、三均考察,而且所占比重最大,数一、三的试卷中所占比例为56%,数二所占比例78%。二、试卷考试内容区别:1、数学一:高等数学:同济六版高等数学中除了第七章微分方程考带*号的欧拉方程,伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;第九章第五节不考方程组的情形;第十二章第五节不考欧拉公式。线性代数:数学一用的教材是同济五版线性代数1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。其中向量组的线性相关性中数一考向量空间,线性方程组跟空间解析几何结合数一也要考。2、数学二高等数学:同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止。线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。概率与数理统计:不考。3.数学三高等数学:同济六版高等数学中所有带*号的都不考;所有“近似”的问题都不考;第三章微分中值定理与导数的应用不考曲率;第四章不定积分不考积分表的使用;不考第六章定积分在物理学上的应用以及曲线的弧长。第七章微分方程不考可降阶的高阶微分方程,另外补充差分方程。不考第八章空间解析几何与向量代数。第九章第五节不考方程组的情形,第十章二重积分为止,第十二章的级数中不考傅里叶级数。线性代数:数学一用的参考教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。数三不考向量组的线性相关性中的向量空间,线性方程组跟空间解析几何结合的问题。概率与数理统计的内容包括:1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计,其中数三的同学不考参数估计中的区间估计。三、对应考试的专业不同。数学一是报考理工科的学生考,考试内容包括高等数学,线性代数和概率论与数理统计,考试的内容是最多的。数学二是报考农学的学生考,考试内容只有高等数学和线性代数,但是高等数学中删去的较多,是考试内容最少的。数学三是报考经济学的学生考,考试内容是高等数学,线性代数和概率统计。高数部分中,主要重视微积分的考察,概率统计中没有假设检验和置信区间。扩展资料:首先,海天考研飞跃计划建议考生在复习的时候对基本概念性的内容尽量从以下6个方面去理解和把握:概念产生的背景,定义概念用到的数学思想方法,概念的定义式,概念的数学含义,几何、物理以及经济意义,最后是概念的拓展与延伸。海天考研飞跃计划建议考生对每个概念都要尽可能地从这几个方面来理解和把握。海天考研飞跃计划认为学懂概念,是学懂数学至关重要的一步。海天考研飞跃计划认为概念是支柱,每1道考题都离不开基本概念性的内容。再者,海天考研飞跃计划建议考生从以下3个方面去理解:第一要搞清定理性质的条件、结论,海天考研飞跃计划认为条件的性质是充分的、是必要的,还是充分必要的,要真正搞懂。第二尽可能从几何和数值的角度加深对抽象理论的理解。第三要尽可能搞清相关理论间的有机联系。如方阵行列式不等于零,用矩阵的语言来讲就是该矩阵是满秩的或可逆的;用向量组的语言来讲,即该矩阵的行列向量组均线性无关;用方程组语言来讲,就是以该矩阵为系数的齐次线性方程组只有零解。用特征值语言来说,就是该矩阵没有零特征值。海天考研飞跃计划认为命题的时候经常是告知这一条,考查考生是否知道另一条。最后,海天考研飞跃计划建议考生从以下3个方面去理解:第一基本的公式要熟悉,最好要搞清楚每个公式的来龙去脉。第二基本的题型方法要熟悉。第三需要适当地掌握一些答题技巧。如现在选择题的比例接近二分之一,海天考研飞跃计划要求考生掌握求解选择题常用的方法——图示法、赋值法、逆推法、排除法等等;海天考研飞跃计划认为知道了哪些方法适合于解答哪类问题,知道了这些方法和适用的问题类型,就可以快速准确地解答选择题。参考资料来源:中国网-学习考研数学的三个方法 考研飞跃计划提醒

考研什么时候开始区分数学一和数学二

后世绝灭
灵蛇爱
考研数学一和数学二是针对工科类才分的类。数一、数二两者的区别如下:1、招生专业的不同:须使用数学一的招生专业:(1)工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术等20个一级学科中所有的二级学科、专业。(2)授工学学位的管理科学与工程一级学科。须使用数学二的招生专业:工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。2、考试科目不同:数一考试科目为:高等数学、线性代数、概率论与数理统计数二考试科目为:高等数学、线性代数扩展资料:考研数一试卷结构:1、试卷满分及考试时间:试卷满分为150分,考试时间为180分钟。2、答题方式:答题方式为闭卷、笔试。3、试卷内容结构:高等数学56%;线性代数22%;概率论与数理统计22%4、试卷题型结构:单选题 8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分考研数二试卷结构:1、试卷满分及考试时间:试卷满分为100分,考试时间为180分钟。2、答题方式:答题方式为闭卷,笔试。3、试卷内容结构:高等数学78%;线性代数22%。4、试卷题型结构为:单项选择题 8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分。参考资料来源:考研数学-百度百科考研数学一大纲-百度百科考研数学二大纲-百度百科

考研数1,数2,数3的区别

神农隐几
毒玫瑰
考研数学针对不同专业的考生有不同的考试内容,我们在复习考研数学之前首先要搞清楚考研数学一二三的区别。