欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

生物考研题咨询

古犹今也
美食家
1.模板 RNA的转录合成需要DNA做模板,DNA双链中只有一股链起模板作用,指导RNA合成的一股DNA链称为模板链(template strand),与之相对的另一股链为编码链(coding strand),不对称转录有两方面含义:一是DNA链上只有部分的区段作为转录模板(有意义链或模板链),二是模板链并非自始至终位于同一股DNA单链上。2.RNA聚合酶 转录需要RNA聚合酶。原核生物的RNA聚合酶由多个亚基组成:α2ββ'称为核心酶,转录延长只需核心酶即可。α2ββ'σ称为全酶,转录起始前需要σ亚基辨认起始点,所以全酶是转录起始必需的。真核生物RNA聚合酶有RNA-polⅠ、Ⅱ、Ⅲ三种,分别转录45s-rRNA; mRNA(其前体是hnRNA);以及5s-rRNA、snRNA和tRNA。3.模板与酶的辨认结合转录模板上有被RNA聚合酶辨认和结合的位点。在转录起始之前被RNA聚合酶结合的DNA部位称为启动子。典型的原核生物启动子序列是-35区的TTGACA序列和-10区的Pribnow盒即TATAAT序列。真核生物的转录上游调控序列统称为顺式作用元件,主要有TATA盒、、CG盒、上游活化序列(酵母细胞)、增强子等等。和顺式作用元件结合的蛋白质都有调控转录的作用,统称为反式作用因子。反式作用因子已发现数百种,能够归类的称为转录因子(TF),相应于RNA-polⅠ、Ⅱ、Ⅲ的是TFⅠ、TFⅡ、TFⅢ。TFⅡ又有A、B、C、D、E、F多种及其亚类。基本概念:1.不对称转录:两重含义,一是指双链DNA只有一股单链用作转录模板(模板链);二是对不同基因同一单链上某些区段作为模板链而另一些区段作为编码链,即模板链并非永远在同一单链上。2. 编码链:DNA双链上不用作转录模板的那一段单链,因其碱基序列除由T代替U而外,其他与转录产物mRNA序列相同而得名。3.σ(sigma)因子:原核生物RNA聚合酶全酶的成份,功能是辨认转录起始区,这种σ因子称σ70,此外还有分子量不同,功能不同的其他σ因子。基本要求: 掌握转录与复制的区别,转录的不对称性,原核生物的RNA聚合酶的组成及各亚基的功能,真核生物RNA聚合酶的分类、性质及功能,原核生物启动子的结构特点,了解真核生物RNA聚合酶的组成,研究转录起始区的方法。二.转录过程1.转录起始:转录的起始就是生成由RNA聚合酶,模板和转录5'端首位核苷酸组成的起始复合物。原核生物RNA5'端是嘌呤核苷酸(A、G),而且保留三磷酸核苷的结构,所以其起始复合物是:pppG-DNA-RNA聚合酶。真核生物起始,生成起始前复合物(PIC)。例如RNA-pol-Ⅱ转录,是由各种TFⅡ相互辨认结合,再与RNA聚合酶结合,并通过TF结合到TATA盒上. 2. 转录延长: 转录的延长是以首位核苷酸的3'-OH为基础逐个加人NTP即形成磷酸二醋键,使RNA逐步从5'向3'端生长的过程。在原核生物,因为没有细胞膜的分隔,转录未完成即已开始翻译,而且在同一DNA模板上同时进行多个转录过程。电镜下看到的羽毛状图形和羽毛上的小黑点(多聚核糖体),是转录和翻译高效率的直观表现。3.转录终止:转录的终止在原核生物分为依赖Rho因子与非依赖Rho因子两类。Rho因子有ATP酶和解螺旋酶两种活性,因此能结合转录产物的3'末端区并使转录停顿及产物RNA脱离DNA模板。非依赖Rho因子的转录终止,其RNA产物3'-端往往形成茎环结构,其后又有一串寡聚U。茎环结构可使因子聚合酶变构而不再前移,寡聚U则有利于RNA不再依附DNA模板链而脱出。因此无论哪一种转录终止都有RNA聚合酶停顿和RNA产物脱出这两个必要过程。真核生物转录终止是和加尾(mRNA的聚腺昔酸poly A)修饰同步进行的。 RNA上的加尾修饰点结构特征是有AAAUAA序列。基本概念:1.转录起始前复合物 (pre-initiation complex,PIC):是真核生物转录因子与RNA聚合酶一同结合于转录起始前的DNA区域而成的复合物。 2.加尾修饰点:真核生物mRNA转录不是在mRNA的位置上终止,而是在数百个核苷酸之后,研究发现在编码链读码框架的3'端之后,常有一组共同序列AATAAA,再下游还有相当多GC的序列,这些序列称为加尾修饰点,转录越过修饰点后,mRNA在修饰点处被切断,随即加入polyA。3.Rho因子:是原核生物转录终止因子,有ATP酶和解螺旋酶活性。转录终止也可不依赖Rho因子。三.真核RNA的转录后加工1. mRNA转录后加工真核生物转录生成的RNA,多需经加工后才具备活性,这一过程称为转录后修饰,mRNA转录后修饰包括首、尾修饰和剪接。加尾修饰是和转录终止同步的,5'端修饰主要是指生成帽子结构,即把5'-pppG转变为5'-pmGpppG。其过程需磷酸解、磷酸化和碱基的甲基化。mRNA由hRNA加工而成。真核生物基因由内含子隔断编码序列的外显子,是断裂基因。内含子一般也出现在转录初级产物hRNA。切除内含子,把外显子连结在一起,就是剪接加工。在电镜下看到加工过程,内含子往往被弯曲成套索状,因此称为套索RNA。现在知道剪接加工中,需要由多种Sn-RNA与蛋白质共同组成的并接体。并接体和hnRNA上的内含子边界序列辨认结合。剪接过程先由含鸟苷酸的酶提供3'-OH对其中内含子5'-端的磷酸二酯键作亲电子攻击使其断裂。断裂的外显子3'-OH对内含子3'-端的磷酸二酯键作亲电子攻击,使刚断出的外显子完全置换了内含子,两个外显子就相连起来,因此这个过程称二次转酯反应。2.tRNA转录后加工tRNA的转录后修饰,除了剪接加工外,还包括tRNA链上稀有碱基的形成,以及加上3'端的CCA序列。3.rRNA的转录后加工 rRNA加工多采用自我剪接的形式。自我剪接的RNA本身形成一种特别的二级结构,称为锤头结构。锤头结构是指复合的茎环组成形态,但其中某些序列上必需是特定的碱基所占据。这种RNA结构,不需要任何蛋白质,就可以水解RNA链上某一特定位点的磷酸二酯键。也就是说,这是一种起催化作用的RNA,现称为核酶。核酶的发现,对酶学、分子生物学,进化生物学都是重要的理论更新,而且,医学上已开始利用人工设计的核酶,去消灭一些作为病原体的RNA病毒或消除一些不利于生命活动的细胞内RNA。基本概念:1. 剪接修饰:RNA转录初级产物含有非编码组分,通过剪接除去非编码组分,把编码组份连接起来。剪接修饰最常见的是靠并接体协助的二次转酯反应,此外还可有自我剪接及需酶的剪接等剪接方式。2. 外显子:定义为断裂基因上及其转录初级产物上可表达的序列。或转录初级产物上通过拼接作用而保留于成熟的RNA中的核苷酸序列或基因中与成熟RNA相对应的DNA序列.3. 内含子:早期定义为核酸上的非编码序列。随着内含子功能的被拓宽,建议用"转录初级产物上通过拼接作用而被去除的RNA序列或基因中与这种RNA序列相对应的DNA序列"较全面。4. 并接体:由snRNA和蛋白质组成的核糖核酸蛋白(核蛋白)复合物。其功能是结合内含子两端的边界序列,协助RNA的剪接加工。5. 核酶(ribozyme):具有催化功能(酶的作用)的RNA分子。核酶能起作用的结构,至少含有3个茎(RNA分子内配对形成的局部双链),1至3个环(RNA分子局部双链鼓出的单链)和至少有13个一致性的碱基位点。上面这个问题你可以用模板设计后在翻译表达,下面的问题,是因为真核生物和原核生物的DNA结构不同,

考研生物综合题型

君知之乎
是不愉也
要考数学的专业那么业务一就是数学它分 数学一 二 三不考数学的话一般要考两门专业课建议去你想报考的学校官网搜一下它的考试科目就可以了不同学校考试的科目不一样的(英语政治统考)

生物学方面考研问题

将有别乎
泰姬陵
跨专业恐怕不行的,跨地区是可以的,不过要看你要考的那个学校怎么样,生物方面研究生考试,生化基本都要考的,这门课每年当掉的人N多啊。。。还有生物学要求的实验技能还是蛮多的,老板在面试的时候会很注重这方面,还有实验思维也是老板关注的,很多想考生物研究生的都是面试过不了。不是特别理智,要慎重啊 本身就是跨专业,可能笔试的时候复习就有些困难其次是面试的时候可能导师也会很慎重的考虑你的专业背景本回答被网友采纳

考研生物化学经典题集及答案

服务员
戒之慎之
去百度文库,查看完整内容>内容来自用户:皇甫宗彦C.丝氨酸        D.谷氨酸 B 根据氨基酸的吸收光谱,色氨酸、酪氨酸的最大吸收峰在280nm处。3.  有关蛋白质三级结构描述,错误的是( A    )。   A.具有三级结构的多肽链都有生物学活性   B.三级结构是单体蛋白质或亚基的空间结构   C.三级结构的稳定性由次级键维持   D.亲水基团多位于三级结构的表面具有三级结构的单体蛋白质有生物学活性,而组成四级结构的亚基同样具有三级结构,当其单独存在时不具备生物学活性。4.  关于蛋白质四级结构的正确叙述是(   D  )。   A.蛋白质四级结构的稳定性由二硫键维系   B.四级结构是蛋白质保持生物学活性的必要条件   C.蛋白质都有四级结构     D.蛋白质亚基间由非共价键聚合蛋白质的四级结构指蛋白质分子中各亚基的空间排布及亚基的聚合和相互作用;维持蛋白质空间结构的

紧急求助:考研生物化学题

若是
饥饿症
乳糖操纵子定义lactose operon参与乳糖分解的一个基因群,由乳糖系统的阻遏物和操纵基因受负的控制,而同时又同步地受支配。1961 年雅各布(F.Jacob)和莫诺德(J.Mon-od)根据该系统的研究而提出了著名的操纵子学说。关于大肠杆菌的乳糖系统操纵子,¦Â-半乳糖苷酶,半乳糖苷渗透酶,半乳糖苷转酰酶的结构基因以LacZ(z), Lac Y(y),Lac A(a)的顺序分别排列在染色体上,与z 相邻,与y 相对的一侧有操纵基因LacO(o),更前面有启动基因Lac P(p),操纵子(乳糖操纵子)就是这样构成的。决定乳酸系统阻遏物结构的调节基因Lac I(i)处于和p 相邻的位置上。一、结构和功能细菌相关功能的结构基因常连在一起,形成一个基因簇。它们编码同一个代谢途径中的不同的酶。一个基因簇受到同一的调控,一开俱开,一闭俱闭。也就是说它们形成了一个被调控的单位,其它的相关功能的基因也包括在这个调控单位中,例如编码透过酶的基因,虽它的产物不直接参与催化代谢,但它可以使小分子底物转运到细胞中。乳糖分解代谢相关的三个基因,lacZ、Y、A 就是很典型的是上述基因簇。它们的产物可催化乳糖的分解,产生葡萄糖和半乳糖。它们具有顺式作用调节元件和反式作用调节基因。三个结构基因图的功能是:lacZ 编码¦Â-半乳糖苷酶,此酶由500kd 的四聚体构成,它可以切断乳糖的半乳糖苷键,而产生半乳糖和葡萄糖lacY 编码¦Â一半乳糖苷透性酶,这种酶是一种分子量为30kDd 膜结合蛋白,它构成转运系统,将半乳糖苷运入到细胞中。lacA 编码¦Â-半乳糖苷乙酰转移酶,其功能只将乙酰-辅酶A 上的乙酰基转移到¦Â-半乳糖苷上。无论是lacZ 发生突变还是lacY 发生突变却可以产生lac-型表型,这种lac—表型的细胞不能利用乳糖。lacZ-突变体中半乳糖苷酶失去活性,直接阻止了乳糖的代谢。lacY-突变体不能从膜上吸取乳糖。这一个完整的调节系统包括结构基因和控制这些基因表达的元件,形成了一个共同的调节单位,这种调节单位就称为操纵子(opron)。操纵子的活性是由调节基因控制的,调节基因的产物可以和操纵子上的顺式作用控制元件相互作用。lacZ、Y、A 基因的转录是由lacI 基因指令合成的阻遏蛋白所控制。lacI 一般和结构基因相毗连,但它本身具有自己的启动子和终止子,成为独立的转录单位。由于lacI 的产物是可溶性蛋白,按照理说是无需位于结构基因的附近。它是能够分散到各处或结合到分散的DNA 位点上(这是典型的反式-作用调节物。)通过突变的效应是可以将结构基因和调节基因相区别的,结构基因发生突变,细胞中就失去这些基因合成的蛋白。但是调节基因发生突变会影响到它所控制的所有结构基因的表达。调节蛋白的突变的结果可以显示调节的类型。lac 基因簇是受到负调节(negative regulation)。它们的转录可被调节蛋白所关闭。若调节蛋白因突变而失活就会导致结构基因组成型表达。表明调节蛋白的功能是阻止结构基因的表达,因此称这些蛋白为“阻遏”蛋白。乳糖操纵子的阻遏蛋白是由4 个亚基(38kDa)组成的四聚体。一个野生型细胞中大约有10 个四聚体。调节基因转录成单顺反子的mRNA,它和操纵子的比率与RNA 聚合酶和启动子之比是相似的。lacI 的产物称为lac 阻遏物(lac repressor),其功能是和lacZ、Y、A 基因簇5¡ä端的操纵基因(Olac),操纵基因位于启动子(Plac)和结构基因(lac2yA)之间。当阻遏物结合在操纵基因上时就阻碍了启动子上的转录起始。Olac 从mRNA 转录起始点的上游-5 处延伸到转录单位+21 处。这样它和启动子的末端发生重叠。新近的观点认为阻遏物影响了RNA 聚合酶,从操纵基因和启动子二者相关位置来看阻遏物结合在DNA 上会阻碍RNA 聚合酶转录结构基因。但我们必须注意其它一些操纵子上的操纵基因其位置和乳糖操纵子并不相同,因而阻遏蛋白可以通过多种方式与操纵操纵基因结合阻断转录。二、阻遏蛋白的活性受到小分子诱导的控制细菌对环境的改变必需作出迅速的反应。营养供给随时都可能发生变化,反复反常。要能得以幸存必需具有可以变换不同代谢底物的能力。单细胞真核生物也同样生活在不断变化环境中;而更为复杂的多细胞生物都具有一套恒定的代谢途径,而无需对外部环境作出反应。在细菌中是很需要灵活性,也需要很经济,因为细菌遇到合适的环境就大量消耗营养对其本身也是不利的。在缺乏底物时就不必要合成大量相关的酶类,因此细菌产生了一种调节机制,即在缺乏底物时就阻断酶的合成途径,但同时又作好了准备,一旦有底物存在就立即合成这些酶。特殊底物的存在导致了酶的合成,此现象称为诱导(inction)。这种类型的调控广泛存在于细菌中,在较低等的真核生物(如酶母)也有这种情况。E.coli 的乳糖操纵子提供了这种调控机制的典型范例。当E.coli 生长在缺乏¦Â一半乳糖苷的条件下是不需要¦Â-半乳糖苷酶的,因此细胞中含量很低,大约每个细胞不高于5 个分子,当加入底物后细菌中十分迅速地合成了这种酶,仅在2-3 分钟之内酶就可以产生并很快增长到5000 个分子/每个细胞。如在酶的浓度将达到细胞总蛋白的5-10%。如在培养基中除去底物,那么酶的合成也就迅速停止,恢复到原来的状态。如果原来培养基中无乳糖,也无葡萄糖,那么细胞只在很低的基本水平合成¦Â-半乳苷酶和透性酶。当加入Lac 后,Ecoli 的lac+ 细胞很快大量合成以上两种酶。进一步用32P 标记mRNA 作杂交实验(用¦Ëlac 中的取得的DNA,与加入乳糖后不同时间内产生的32P-mRNA 进行分子杂交)结果表明加入的乳糖能激发lac 的mRNA 的合成。lac mRNA 极不稳定,其半衰期仅有3 分钟,这个特点随着诱导很快的恢复。当诱导物一除去转录立即停止,在很短的时间内所有的lac mRNA 即被降解掉,细胞内的含量恢复到基础水平。¦Â-半乳糖苷酶和透性酶合成是和lac mRNA 同时被诱导的,但当除去诱导物时在细胞中¦Â-半乳糖苷酶和透性酶要比lac mRNA 稳定,因此酶的活性在一段较长的时间内保持被诱导水平。这种对营养供给发生改变作出迅速反应的调控类型,不仅提供了代谢新底物的能力,而且习惯于关闭在培养基中实然加入的一些成份的内部合成。比如E.coli 的Trp 的合成是通过Trp 合成酶的作用。如果在细菌生长的培养基中加入Trp 的话,那么立即停止Trp 合成酶的生产。这种作用称为阻遏(repression)效应。它使细菌避免合成多余的物质。在细菌中同时存在着诱导和阻遏的现象。诱导是细菌调节其分解底物供给生长的能力。阻遏是细菌调节其合成代谢产物的能力。无论是酶作用的小分子底物的调节,还是酶活性的产生,它们的启动是独自的,小分子底物称为诱导物(incers)某些物质能阻止酶合成它们本身,此物质就称辅阻遏物(corepressors)。诱导和酶阻遏是高度特异的,只有底物/产物或紧密相关的分子才能起作用,但小分子的活性并不依赖于和靶酶的相互作用。某些诱导物与自然的¦Â-半乳糖苷酶相似,但并不能被酶分解,比如异丙基-¦Â-D-硫代半乳糖苷(isopropylthiogalactoside,IPTG)。其半乳糖苷键中用硫代替了氧,失去了水解活性,但硫代半乳糖苷和同源的氧代化合物与酶位点的亲和力相同,IPTG 虽不为¦Â-半乳糖苷酶所识别,但它是lac基因簇十分有效的诱导物。能诱导酶的合成,但又不被分解的分子,称为安慰诱导物(gratuitous incer)。由于乳糖虽可诱导酶的合成,但又随之分解,产生很多复杂的动力学问题,因此人们常用安慰诱导物来进行各种实验。它的存在表明一个重要的问题,就是这个控制系统必须具有某种成份,它不同于靶酶,能识别合适的底物;而它的这种识别相关底物的能力也不同于酶。对诱导物作出反应的这种成份就是阻遏蛋白,它由lacI 编码,其作用是控制lacIYA 结构基同的转录,对环境作出反应。三个结构基因转录成单个的多顺反子mRNA。阻遏蛋白的活性状态决定了此启动子是否打开或关闭。在缺乏诱导物时,这些基因不能转录,因为阻遏蛋白是活性状态结合在操纵基因上。当诱导物存在时,阻遏物与之结合,变成为失活状态,离开操纵基因,启动子开始转录,起始于lacZ 5¢端,终止于lacA 的3¢端。诱导物如何控制阻遏蛋白的活性呢?阻遏物对于操纵基因有很高的亲和性,在缺乏诱导物时,阻遏物总是结合在操纵基因上,使得邻近的结构基因不能转录。但当诱导物存在时,它和阻遏物结合形成了一个阻遏物复合体,不再和操纵基因结合。右图为Lac 操纵子(Lac operon)的结构以及负调控图:(a)Lac 操纵子的结构图(b)无诱导物存在时,阻遏物与操作基因(operator)结合使得结构基因不能正常转录(c)诱导物(乳糖或IPTG)存在,与阻遏物结合时阻遏物从操纵基因上头里下来,RNA 聚合酶可通过启动子和操作基因正常转录出一条多顺反子mRNA 从可翻译得到三种梅操纵子控制的重要特性是阻遏物的双重性:它既能阻止转录,又能识别小分子诱导物。阻遏物有2 个结合位点:一个是结合诱导物的,另一个是结合操纵基因的。当诱导物在相应位点结合时,它改变了阻遏蛋白的构象,干扰了另一位点的活性。这种类型的调控叫变构调控。(allosteric control)诱导完成一种协同调控(coordinate regulation):所有的一组基因都一道表达或一道关闭。mRNA 一般总是从5¢开始转录,所以诱导总是导致¦Â-半乳糖苷酶,Lac 透性酶和Lac 乙酰转移酶按一定顺序出现。此多顺反子mRNA 的共同转录解释了为什么在诱导物的不同条件下,lacZ、Y、A 三个基因的产物总保持同样的当量关系。诱导触动了“开关”使基因簇表达。诱导物交替变换它们的效应,其它的因子影响了转录和翻译的绝对水平,但三个基因之间的关系事先已被它们的结构所决定了。我们要注意操纵子的潜在特点。Lac 操纵子含有lacZ,它编码糖代谢所必须的¦Â-半乳糖苷酶;含有的lac 编码透性酶,此酶是负责将底物转达运到细胞中。但操纵子在非诱导状态时,基因尚未表达,也就不存在透性酶。那么诱导物开始怎样进入细胞呢?其实在细胞中透过酶等总是以最低量存在的,足以供给底物开始进入之需。操纵子有一个本底水平(basal level)的表达,即使没有诱导物的存在,它也保持此表达水平(诱导水平的0.1%),而有的诱导物是通过其它的吸收系统进入细胞的。三、操纵基因和调节基因的鉴别野生型的操纵子以被调节的方式进行表达,调节系统若发生突变可能使表达停止或者在没有诱导物存在时仍然表达。前者称为不可诱导性(unincible)突变;后者对调节没有反应能力,无论诱导物是否存在都进行表达,故称为组成型突变(constitutive mutants)。操纵子调节系统的成份通过突变已被鉴别出来,它们作用于结构基因的表达以及编码区的外侧序列。这些成份分为二类:以启动子和操纵子,作为调节蛋白(RAN聚合酶,阻遏物)靶顺序的通过顺式作用突变而被鉴定出来。lac 位点通过反式作用突变被鉴定是为编码阻遏蛋白的基因。操纵基因是原来通过组成型突变鉴别出的,称为“Oc”,其分布特点提供了第一个顺式元件的证据,它是有功能的,但本身不编码。与OC 突变相邻接的结构基因以组成型表达,这是由于突变改变了操纵基因,使阻遏蛋白不能与之结合。这样阻遏蛋白就不能阻止RNA 聚合酶起始转录。从而使操纵子持续转录。操纵基因只控制与它相邻接的一些lac 基因。若将第二个Lac 操纵子导入细菌的质粒上,它有自己特有的操纵基因。操纵基因互不干扰。因此如果一个操纵子有一个野生型的操纵基因,在通常条件下,它将被阻遏。当第二个操纵子带有OC 突变时,它将持续表达。这些特点表明操纵基因是一个典型的顺式作用位点。操纵基因只控制与其相邻接的基因而不影响存在于细胞中的其它DNA 上的等位座位。像OC 这样的突变称为顺式-显性(cis-dominant)。顺式作用位点中发生突变就不能和相关蛋白相结合,当两个顺式作用位点彼此靠得很近时(如启动子和操纵基因),我们通过互补测验是不能分别突变发生在那一个位点上,而只有通过它们对表型的影响来加以区别。顺式显性是控制邻接顺序的那些DNA 位点的特性。如果一个控制位点其功能是作为多顺反子mRNA 的一部分。它将表现出顺式显性的特点。特别表现在控制位点不能和被它调节的基因相分离。从遗传学的观点来看这些位点和基因是在DNA 上还是在RNA 这并不重要。lacI-突变型也可导致持续转录。无论是点突变还是缺失都可产生这样的结果。后者可能是丢失了和DNA 结合的功能区。因此与诱导物是否存在无关。这种现象是符合负控制系统的。lac+基因编码一个阻遏蛋白,它可以关闭lacZYA 的转录。阻遏蛋白失去和操纵基因结合能力时,则为组成型突变。转录能在启动子上自由地起始。同时lacI- 突变由于阻遏蛋白的失活使lacZYA 呈组成型表达。当lacI- 和lacI+二者同时存在于同一个细胞时,通过确定二者的关系可以帮助人们得出正确的结论。这只能通过构建部分二倍体(partial diploid)来完成的。即一个拷贝的操纵子位于细胞的主染色体上,而另一个放在质粒上,此质粒仅带少量基因,可以独立复制。在细胞中若既有lacI+又有lacI-,则可以正常调节。当除去诱导物时,结构基因又重新被阻遏。这表明lacI+可以产正常的阻遏物,当诱导物不存在时它可以反式阻遏lacI ZYA+基因,按遗传学的观点野生型的可诱导性对于组成型突变型是显性的。这是负控制的重要标志。操纵子非诱导性突变不能都得到表达,它们可以分成两种组成型突变:(1) 启动子突变是顺式作用,若这种突变阻碍了RNA 聚合酶与Plac 的结合,也就不能阅读操纵子,因为它不能转录。(2) lacI 突变若阻遏物失去和诱导物结合的能力也会导致和前者相同的现象。这种突变称为lacIs。这种反式作用对野生型来说是显性的。阻遏蛋白被保持在对操纵基因的识别和阻碍转录的这种活性状态中。诱导物是否加入对其没有影响。这是由于细胞中突变的阻遏物结合在所有的lac 操纵基因上并阻断转录,同时还不能取下,野生型阻遏物的存对它也毫无影响。lacI 突变的特点可以从阻遏蛋白结构的得以解释。在阻遏蛋白上具有两种不同类型的结合位点。通过这些结合位点来控制基因的表达以对环境作为反应。DNA-结合识别操纵基因。诱导结合位点与小分子诱导物结合。一旦与诱导物作用使其构象发生改变而失去与操纵基因DNA 结合的能力。通过lacI 突变失去某些活性可以鉴别出阻遏物亚基中的两个结合位点。DNA-结合位点的突变是组成型的(因为阻遏物不能和DNA 结合来阻断转录)。诱导物结合位点的突变是不可诱导性的(由于诱导物不能减少阻遏物和DNA 的亲和力)。阻遏物功能的一个重要的特点是多聚体蛋白。在细胞中阻遏蛋白的亚基随机结合成四聚体。当不同的lacI 等位基因存在时,它们的产物作为亚基结合成异聚四聚体,其特性和同聚四聚体不同。这种亚基之间的作用类型是具有多聚体蛋白的性质,被称为等位基因间的互补(interallelic complementation)。负的互补(negative complementation)发生在某些阻遏蛋白突变体之间。正如在lacI-d 与lacI+基因的重组中所见到的一样。此lacI-d 的突变仅导致阻遏蛋白不能和操纵基因结合。因此它像lacI-等位基因一样,使操纵子呈组成型表达。由于lacI-类型的突变产生的阻遏物没有活性,它相对于野生型基因是隐性的,而“-d”这个符号表示负互补这种突变类型是显性的。这种突变称反式显性(trans-dominant),也称为显性失活(dominant negatives)。这种显性的原因是由于lacI-d 等位基因产生一个“坏”的亚基不仅它本身不能结合操纵基因的DNA,而且它还通作为四聚体的一部分阻止四聚体中“好”的亚基与DNA结合。这就意味着阻遏蛋白四聚体是作为一个总体,而不是单个单体的简单的集合。这对完成阻遏来说是很必要的。在体外将“好”的亚基和“坏”的亚基混合起来也会产生损坏的作用。lacI-d 的突变是发生在阻遏蛋白的DNA 结合位点这就可以解释混合的四聚体可以阻止与操纵基因的结合。结合位点数目的减少使四聚体和操纵基因的亲和力减少。lacI 基因的左末端对于蛋白产物来说正好是在N-末端DNA-结合位点。lacI-隐性突变发生在此位点以外的任何区域。但可以起到DNA 结合的间接作用。lacIs 是不可诱导性突变,它是不能对诱导物作出反应。此可能由于阻遏蛋白失去了诱导物结合位点,或者不能将它们的作用传递到DNA-结合位点。lacIS 突变位点是很有规律的延着基因成束间隔排列。这些间隔可能存在着肽链的改变。 图片上不去……PDF的

川大考研生物化学考研真题谁有?

能破
野猫
川大生科院考研交流二一一七一零四六六实验设计1.Pro Glc Ala Vc GSH 请设计不同实验区别他们。2.差异表达蛋白如何区分,设计实验区分3三种印记实验原理及用途,酶联免疫法原理用途3如何鉴别所提取核酸纯度,有哪些注意事项。4设计柠檬酸合酶提取方案,鉴别纯度

生物技术专业考研的问题

独居门
荡空山
  一般来说生物技术的核心课程是集中在微生物,细胞生物学,生物化学和遗传学这些方面,所以考研可以选择网这些方向考,同时它和药学和医学也有比较紧密的联系,如果感兴趣的话,也可以考虑考虑 另外你也考虑一些前沿科学和交叉学科我觉得生物技术、生物医学工程方向考研的话,可以考电子工程类的研究生。生物电的应用与研究,还是很热门的。  生物技术专业排名 :  中国科学院上海生命科学研究院 中国科学院动物研究所  北京大学 清华大学 复旦大学 华中农业大学 中山大学 浙江大学 武汉大学 中国农业大学生物科学是近几年发展起来的边沿学科,是社会科技发展的产物。虽然是新兴事物,可是它的出现和存在是科学发展的必然结果,也将在国家、社会的发展进步中起到举足轻重的作用。国家、社会对这个专业是有需求的,也很重视,从这个发展趋势来看,这个专业的就业前景还是很可观的,但是,具体到个人的就业情况来说,还是存在一些客观的问题,下面我们来进一步分析一下。专业和前景分析 生物科学专业包括了生物科学和生物技术两个专业方向,这些专业学科主要培养学生学习生物科学技术方面的基本理论、基本知识,学生将受到应用基础研究和技术开发方面的科学思维和科学实验训练,进而具有较好的科学素养及初步的教学、研究、开发与管理的基本能力。其核心课程主要包括了动物生物学、植物生物学、微生物学、生物化学、遗传学、细胞生物学、分子生物学、普通生态学等学科;必修课程则包括无机及分析化学、有机化学、大学数学、大学物理学、生物统计学、发育生物学、生物技术概论、进化生物学等。从就业方向来看,生物科学专业的学生毕业后可以到科研机构或高等学校从事科学研究或教学工作,也可以到工业、医药、食品、农、林、牧、渔、环保、园林等行业的企业、事业和行政管理部门从事与生物技术有关的应用研究、技术开发、生产管理和行政管理等工作。另外,生物科学专业的科技含量要求较高,因此对于这个学科的学生来说,选择继续深造对于以后从事专业的科学研究也是有必要的。生物科学专业是一个处在上升过程中的专业,发展机会将不断增加。这个专业的学生毕业后面临的地区性择业差异和专业能力、文凭在他们求职过程中的重要性:1.地区性差异是一种客观存在的现状,发达的大城市发展这个产业的基础和需要,正是一种良性循环的状态,对于就业来说自然是较好的选择。边远、中小城市则处在起步或萌芽的状态,还需要一定的时间逐步发展。2.这个专业的本科毕业生在求职过程中存在着比较明显的“高不成、低不就”的现象。一方面,好的科研、企业单位是理想的择业对象,可是其要求自然也比较高,本科生的竞争优势不是很强,各个方面的能力都需要提高;另一方面,基层单位就业容易,可是条件差,发展也不太理想。生物科学专业发展方向 生物科学专业是科学领域的新兴行业,任何一个行业的存在和发展都不可能是孤立的,它必然会牵动相关行业的共同发展,所以它的方向也不会是单一的。这也决定了,本专业的学生其就业方向也不会是单一的,有一定的选择范围。我们大致可以将其划分为科研管理和教育工作两大类型。从事不同的工作,其性质不同,对从业者就有不同的要求。 从事不同的工作不仅要看自身的专业能力,还应该注意自己的性格因素,这也是不可忽视的一个方面。从事技术研究需要沉稳、细致的性格,内向的人更适合;从事相关的管理工作,不仅要细致耐心,还要有良好的沟通能力,这更加适合开朗外乡的人;而从事教育工作则最好两者兼备,既可以安静、仔细的研究专业课程,又能够调动别人的情绪和积极性。所以,毕业生在选择职业的时候,要注意结合自己的个性特点。 首先来看科研类,在科研机构或企事业单位从事科学研究、应用研究和技术开发等工作,对本科生来说有较大的难度。本身这种岗位对从业者的专业能力要求就较高,招聘方对文凭等各个方面考虑的也是非常细致,尤其是比较权威的机构,在这方面的要求会更高。所以,这种岗位虽然待遇优厚却是机遇难求。 再看管理类,有些企事业单位和行政管理部门都设立了与生物技术有关的生产管理和行政管理工作岗位。这些岗位与科研岗位相比,虽然也重视应聘者对专业知识、技能的把握和运用,但在文凭等其他环节没有过多的严格要求,为本科生提供了更多的就业机会。 生物科学专业的学生必须注意在学习的过程中培养自己的专业技能,否则求职很难有突破。基本理论知识和基本的实验技能自然无需多说,包括了基础的数学、物理、化学和相关的动物生物学、植物生物学、微生物学、生物化学、细胞生物学遗传学、发育生物学、分子生物学、生态学等。同时还应该了解相近专业的一般原理和知识,了解国家科技政策、知识产权等有关政策和法规,了解生物科学的理论前沿、应用前景和最新发展动态,还要具有较强的自学能力和更新知识的能力,外语和计算机等必备知识技能应达到规定的等级水平。 专业能力是提升竞争力的重要环节,比学历更加实用,应该根据自己的职业发展方向有针对性的锻炼能力。从事生产管理,就要在专业技能过硬的基础上,加强管理方面的能力,这样才能有效的拓展自己的职业发展空间。 教学工作,机会在增加。 随着社会对生物科学行业需求的增加,国家对本专业的重视程度也在不断提高,对这个专业的教学自然要有更高要求,会有越来越多的高校增设这个专业,对专业教育工作者的需求自然会增加。而且,科技的进步更新是很快的,教育工作者也存在更新的趋势,这对毕业求职者来说也是很好的机会。现在看来,生物科学专业的本科生,毕业后从事教学工作的人还很少,几乎没有。原因是,本科毕业留校任教本身就有难度,特别是像这种科技含量较高、专业要求较高的。本回答被网友采纳

求助:考研生物化学用什么习题集啊?

六分
务义
书名:《生物化学学习与考研指津(2008版)》作者:龚兴国 书名:《基础生物化学习题指导》作者:黄德娟 还有一本生物化学考研精解,白皮书,还可以刚开始复习的时候用的这本书。还有陈钧辉,生物化学习题册!也不错,不过没有细看!考华理生化不是很难只需前面两本就足够啦!前期复习可以选择一下第三本,比较细。但是重要的是一定要把十年真题搞定。个人认为真题有很大的作用,不过要是把王镜岩的两本生化书过四五遍那就问题不大了!

谁有湖南大学生物学考研专业课历年真题??拜托

大搜索
孰有之哉
生物化学的http://wenku..com/view/914583d733d4b14e852468d7.html 细胞生物学真题 http://wenku..com/view/0272c0dfa58da0116c174967.html 希望对您有帮助这玩意得上淘宝瞅瞅吧,一般人没有的。