欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

对于人工智能方向,数学和计算机专业哪个更重要

哈哈笑
乃愤吾心
数学当前许多复 AI 的研究基本上都围制绕着数学在进行,比如有统计学、概率论等,这些都是在理论层面的。无论你在哪里看到关于人工智能的课程,都会跟你说要求你掌握了基本的数学知识,例如导数、线性代数、概率论、统计学等。如果是数学专业的人,在 AI 上偏向于理论的研究,例如新算法的研究,利用更加好的知识来使算法更加快速更加精确。计算机科学计算机科学研究如何把理论在计算机上使用编程语言实现,这是人工智能关键的一环。计算机科学专业的人需要熟练地掌握编程的原理。大多数时候,他们需要让算法高效地在计算机上运行。同时计算机专业的人也需要懂得基本的数学。目前,人工智能最主要最流行的语言就是 Python 和 C++。来这里看看,有这个专业

学习人工智能的数学基础是甚么

钓鱼去
郭象
数理逻辑、离散数学、微积分是绝对重要的。 人工智能有很多分支,从内各分支的总和来看,容几乎所有的数学都是重要的。不过不论你将从事哪些分支的研究,有几项始终是重要的:数理逻辑、离散数学、微积分。对AI理论研究,需要很深的逻辑;象模态逻辑、时序逻辑等等非经典逻辑,还需要范畴学。对传统符号式机器学习,需要数理逻辑和离散数学、概率统计。对连接主义机器学习,需要概率统计、微积分。对强化学习和Agent,需要逻辑和运筹学。 祝你在学习中取得进步。模糊数学,要不然不能叫只能,只是简单的判断罢了还有就是逻辑学,这个很必要

人工智能的研究价值

祭父
两仪
例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而636f707962616964757a686964616f31333339666661且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。通常,“机器学习”的数学基础是“统计学”、“信息论”和“控制论”。还包括其他非数学学科。这类“机器学习”对“经验”的依赖性很强。计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。我们可以将这样的学习方式称之为“连续型学习”。但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”。这在某些情形下被称为“灵感”或“顿悟”。一直以来,计算机最难学会的就是“顿悟”。或者再严格一些来说,计算机在学习和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。正因为如此,这里的“实践”并非同人类一样的实践。人类的实践过程同时包括经验和创造。这是智能化研究者梦寐以求的东西。2013年,帝金数据普数中心数据研究员S.C WANG开发了一种新的数据分析方法,该方法导出了研究函数性质的新方法。作者发现,新数据分析方法给计算机学会“创造”提供了一种方法。本质上,这种方法为人的“创造力”的模式化提供了一种相当有效的途径。这种途径是数学赋予的,是普通人无法拥有但计算机可以拥有的“能力”。从此,计算机不仅精于算,还会因精于算而精于创造。计算机学家们应该斩钉截铁地剥夺“精于创造”的计算机过于全面的操作能力,否则计算机真的有一天会“反捕”人类。当回头审视新方法的推演过程和数学的时候,作者拓展了对思维和数学的认识。数学简洁,清晰,可靠性、模式化强。在数学的发展史上,处处闪耀着数学大师们创造力的光辉。这些创造力以各种数学定理或结论的方式呈现出来,而数学定理最大的特点就是:建立在一些基本的概念和公理上,以模式化的语言方式表达出来的包含丰富信息的逻辑结构。应该说,数学是最单纯、最直白地反映着(至少一类)创造力模式的学科。

人工智能建模中的数学工具

丹心令
樊迟
MATLAB统计学习方法 华为的李航写的一本人工智能的入门书

人工智能需要具备哪些数学基础?

吉祥止止
黑箱子
对于人工智能很多人都是不陌生的,现在我们3433646531的生活中也有很多的人工智能产品。人工智能的概念于1956年提出,经过几十年的长足发展,现在的人工智能已经在慢慢地进行普及,而越来越多的人也开始加入到人工智能的行业,但想入行并不容易,学习人工智能的相关知识是非常有必要的。而具备一定的数学基础,对于学习人工智能来说更是非常重要,因为数学的基础知识蕴含着人工智能问题的基本思想和方法,也是理解复杂算法的必备要素,那么我们应该具备哪些数学基础呢?人工智能需要具备的数学基础有很多,主要包括线性代数、概率论、形式逻辑、数理统计等,本文就为大家一一介绍一下这些学科及其用处。(1)线性代数;基本上所有的理科生和部分文科生在大学期间都会学习这么课程,它不仅仅是人工智能的基础,还是很多其它以现代数学为主要分析方法的众多科学的基础。线性代数的本质是将具体的事物抽象为数学对象,并描述其静态或动态特性,在人工智能领域,计算机处理生活中的事物采用的就是将具体抽象化的方法,因此线性代数非常重要。(2)概率论;如果说线性代数着重于将具体事物抽象化,那么概率论所着重的点就是生活中无所不在的可能性。在人工智能领域,概率论通过对生活中的可能性进行建模分析处理,进而做出判断或操作,由此可见,概率论的重要性丝毫不亚于线性代数。(3)形式逻辑;在人工智能概念最初提出的时候,这一理论的各位奠基者认为,理想的人工智能应该是具有抽象意义的学习、推理和归纳的能力,这就需要一个认知的过程,如果我们将认知的过程定义为对符号的逻辑运算,那么形式逻辑就是人工智能的基础,因为对于人工智能来说,认知的本质是计算。(4)数理统计;虽说数理统计是以概率论为基础的,但其和概率论有着本质上的不同,数理统计着重研究的对象是未知分布的随机变量,你可以这样理解,那就是数理统计是逆向的概率论。对于人工智能来说,能够对未知分布的随机变量进行研究分析,才是最重要的。以上就是笔者为大家介绍的入行人工智能所需要我们具备的数学基础,其实并不完全,因为人工智能行业所涵盖的内容实在太多,文章中只是为大家就一些典型内容进行介绍,如果大家对于人工智能感兴趣,可以深入地探讨一下。

人工智能研究内容有哪些?(简答题)

殆乎
苍蝇王
人工智能抄学科研究的主要内容包括袭:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。扩展资料智能模拟:机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信息感应与辨证处理。学科范畴:人工智能是一门边沿学科,属于自然科学、社会科学、技术科学三向交叉学科。涉及学科:哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。参考资料来源:百度百科——人工智能

学习人工智能AI需要哪些知识?

疯狂学
大私枭
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑653364什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用--机器视觉:指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统等。人工智能(Artificial Intelligence)是研究解释和模拟人类智能、智能行为及其规律的一门学科。其主要任务是建立智能信息处理理论,进而设计可以展现某些近似于人类智能行为的计算系统。AI作为计算机科学的一个重要分支和计算机应用的一个广阔的新领域,它同原子能技术,空间技术一起被称为20世纪三大尖端科技。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

人工智能是智能算法的实现,其核心内容在于什么?

风琴手
拆房工
人工智能是计算机学科的3939一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

考研选清华大学人工智能专业,请问一下报考有什么要求?

胡不仕乎
上矣
1 这个专业软硬要求复都是比较高制的,想电类的专业课都要熟悉,至少有一门语言基础才,想c c++等 2 至少要学校遗传算法 人工智能原理 自动控制 等的课程 3 考研考试的时候考什么专业课,由你报考的学校决定 每个学校是不一样的,在考试前要学好数学英语,为了以后学习轻松 还要学好专业课 4 导师看重的是你的综合能力,包括英语基础 专业课水平 和创新能力 5 最出名的清华大学 北航 北理工 中国矿大 浙江大学等 6 想现代的军事雷达 导航 医学智能仪器 能都要用到此类的东西 奥运会的时候智能防爆检测仪就是一个例子,就业范围和领域都是比较好的,当然越是好的东西就是越难学,祝你好运!!!!