欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

中国科学家在人工智能研究上基础取得的哪些重要成果?

海棠红
黄金雀
你好:《自然》(Nature)期刊发表的一篇文章,从论文影响力、核心应用、硬件、人才等方面,详细地对中国当前的AI发展现状进行了分析。2017年,我国制定了《新一代人工智能发展规划》,描绘了未来十几年我国人工智能发展的宏伟蓝图,确立了 “三步走” 目标:到 2020 年人工智能总体技术和应用与世界先进水平同步;到 2025 年人工智能基础理论实现重大突破、技术与应用部分达到世界领先水平;到 2030 年人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。随着第一个期限、2020年的临近,中国的人工智能发展到什么程度了呢?研究人员注意到,中国的AI研究的质量出现了令人印象深刻的飞跃,他们还预测,中国留住本土人才的能力将发生转变。但观察人士警告称,有几个因素可能阻碍中国的计划,包括缺乏对开发支撑该领域的工具的理论的贡献,以及中国企业不愿投资于实现根本性突破所需的研究。科学家们表示,中国对人工智能的追求不仅仅是与美国的一场国力竞赛。人工智能技术有望在医疗、交通和通信领域取得进步,在该领域取得根本性突破的国家可能会决定其未来的方向,并从中获得最大的利益。“毫无疑问,中国将人工智能视为这个时代的关键技术之一,并希望与美国匹敌,”在英国牛津大学人类未来研究所研究中国人工智能发展的Jeffrey Ding表示。在2017年《新一代人工智能发展规划》发布之后,促进了政策的出台,以及来自部委、省级政府和私营企业的数十亿美元的研发投资。中国AI研究质量提升,核心技术落后一项对学术搜索引擎微软学术(Microsoft Academic)收录的人工智能论文的分析显示,中国正朝着产生重大影响的方向稳步前进。这项由艾伦人工智能研究所进行的分析发现,在被引用最多的前10%的论文中,中国的作者比例稳步上升。其份额在2018年达到了26.5%的峰值,与美国的29%相差不远,而美国的份额正在下降。如果这一趋势继续下去,中国明年在这个指标上可能会超过美国。其他分析显示,中国人工智能论文的平均引用量一直在稳步增长,高于世界平均水平,但低于美国作者的论文。请点击输入图片描述西安交通大学人工智能与机器人研究所所长郑南宁表示,中国在计算机视觉、语音识别和自然语言处理方面也拥有世界领先的公司。但在打造人工智能的核心技术工具方面,中国仍然落后。例如,由美国学者和企业开发的开源平台TensorFlow和Caffe,在世界各地的工业和学术界得到了广泛的应用。郑南宁表示,中国由百度开发的PaddlePaddle是一个主要的开源平台,主要用于AI产品的快速开发。中国在人工智能硬件方面也是落后的。全球领先的人工智能半导体芯片大多由英伟达、英特尔、苹果、谷歌和AMD等美国公司制造。郑南宁说:“我们在设计支持先进人工智能系统的计算芯片方面也缺乏专业知识。”郑南宁预测,中国可能需要5-10年的时间才能达到美国和英国在基础理论和算法方面的创新水平,但这是可以实现的目标。柏林智库墨卡托中国研究中心政治学家Kristin Shi-Kupfer表示,为这些基本理论和技术做出贡献,将是中国实现其长期人工智能目标的关键。她表示,如果在机器学习方面没有取得真正突破的研究进展,中国在人工智能领域可能会面临一个增长上限。中国对AI人才的吸引力提升对中国的进步影响同样重要的一个因素是留住有才华的研究人员,而中国在这方面似乎更有希望。根据学术界和工业界联合撰写的2018年《中国人工智能发展报告》,截至2017年底,中国拥有全球第二大人工智能科学家和工程师群体,约1.82万人,仅次于美国的约2.9万人。但在顶尖人工智能研究人员的数量上,中国仅排在第六位。所谓顶尖,是根据他们的h指数衡量的,即最具生产力和被大量引用的作者。请点击输入图片描述很多计算机科学家在美国接受高等教育,然后留在那里为全球性科技公司工作。然而,有迹象表明,情况正在发生变化。中国的人工智能研究机构正试图以高薪吸引其中一些研究人员回国。例如,在郑南宁的机器人中心,一些教授的工资是大学其他教授的2-3倍,他说。郑南宁说,该中心还为员工提供了一个比中国许多大学更为全面的评估体系,相比其他标准,中国的大学往往会奖励高发表率。他还实施了一个招聘系统,绕过了大学的集中程序,允许科学家快速组建工程师团队,目前正在开设人工智能的本科课程。中国部署应用环境得天独厚Ding表示,考虑到腾讯、百度和阿里巴巴这三家核心科技公司日益增长的专业技能,中国到2020年拥有全球领先的人工智能公司的计划也是可以实现的。他说:“这些公司已成为人工智能领域的全球领导者,尽管它们仍未达到谷歌和微软等美国公司的水平。”CB Insights的数据显示,中国至少还有10家估值超过10亿美元的私营AI初创企业。中国的一大优势是其人口规模,这为训练AI系统创造了巨大的潜在劳动力和独特的机会,包括用于训练预测疾病的软件的大型患者数据集。今年2月,中国研究人员表示,他们的NLP系统能够从电子健康记录中诊断出常见的儿童疾病,其准确性堪比经验丰富的儿科医生。该数据集包括了近60万访问一家医院的儿童病历数据;在许多其他国家,获取这么多数据是十分困难的。中国AI治理原则初现如果中国要在人工智能领域拥有全球影响力,同样重要的是,必须要有适当的治理,因为这将允许中国的研究人员和公司建立必要的信任来赢得世界各地的用户,以及建立与其他国家的研究人员的合作。与许多国家一样,中国已经开始为开发和使用人工智能制定伦理原则。今年6月,全国新一代人工智能治理委员会发布了人工智能开发的八大治理原则,包括和谐友好、公平公正、包容共享、尊重隐私、安全可控、共担责任、开放协作、敏捷治理,这与经济合作与发展组织(OECD)今年5月发布的措施类似。总结而言,中国的人工智能研究质量越来越高,应用和部署AI的环境得天独厚,吸引和留下人才的能力正在提升,但在高影响力的论文,人才和道德规范方面,中国仍在追赶美国。

人工智能各国实力排名近读一份牛津大学的一份研究报告称,中国的人工智能实力上,仅是美国的一半,对吗?

玫瑰碗
爱听闻
我不知道这一半是如何衡量出来的!但从中兴事件中我们就可以看得出来专在科技、属人工智能等领域里的核心技术和高端配件如芯片等其实不在我们手里。如果,我们不在未来5到10年内去拥有这核心技术,这那是差一半的事呀,压根就是你不可去实现高端人工智能!请天安参阅5月4日的新加坡联合早报报道.对您的解答不太满意,主要是笼统模糊。追答好的,谢谢!

人工智能的趋势

驴得水
痴心劫
今年以来,各地纷纷出台人工智能产业发展政策,“人工智能+”产业应用已经成为经济增长的新引擎。6月26日,为推动人工智能产业发展迈上新台阶,在深化融合应用的同时,我国还将突破核心技术,引导人工智能产业技术创新体系建设,加快打造一批人工智能产业集群,完善政策体系,构建人工智能基础支撑平台。我国人工智能市场规模今年以来,广东、天津、辽宁、黑龙江、福建、四川、安徽等多个省市已经相继发布了人工智能规划。比如,安徽省日前发布的新一代人工智能产业发展规划明确提出,到2020年人工智能产业规模超150亿元,带动相关产业规模达到1000亿元。据前瞻产业研究院发布的《人工智能行业市场前瞻与投资战略规划分析报告》统计数据显示,2017年,我国人工智能市场规模达到了216.9亿元,比2015年增长了52.8%。预计2018年将达到339亿元,到2020年将超710亿元增长超2倍。人工智能发展趋势分析我国提出的智能化标准提案已经成为全球首个面向智能制造服务平台的国际标准。人工智能技术已经成为推动移动互联时代向智能互联时代转变的重要驱动力量,“人工智能+产业应用”也成为经济增长的新引擎。“人工智能+制造业”仍是人工智能发展的重要落点。2017年12月,我国出台《计划》,以信息技术与制造技术深度融合为主线,明确了未来三年产业发展的重点和目标。随着人工智能算法、智能语音与计算机视觉、智能驾驶等领域的不断发展,人工智能企业将加速崛起。下一步,在突破核心技术方面,将引导人工智能产业技术创新体系建设,夯实智能传感器、人工智能芯片和基础软件等产业核心基础;在深化融合应用方面,将培育推广智能制造新模式、新业态,推进产业智能化升级;在打造产业集群方面,将强化部省合作联动,加快打造一批特色突出、辐射带动作用明显的人工智能产业集群;在完善政策体系方面,将建立人工智能标准、测评、知识产权等服务体系,推动建设行业训练资源库、标准测试数据集和开放平台,构建人工智能基础支撑平台。

人工智能研究的两个领域是什么

四牡
常绿树
人脸识别、语音识别是人工智能应用最为人熟知的两个领域。智能音箱、人脸门禁也已经走进不少人的生活。去年大火的无人货柜,则用到了“物品识别”技术。接下来,人工智能推广应用会怎么走?靠算法的不断提升吗?海康威视高级副总裁徐习明说:“今天的人工智能还是一种弱人工智能。基于深度学习的算法精度会无限逼近100%,但永远无法达到。随着‘准确率’提升,最后竞争的是场景落地能力。”码隆科技首席科学家黄伟林也认同这个说法。码隆科技是一家聚焦于“物品”图像识别的公司,无人货柜是其主要应用场景之一。“在物品识别领域,目前难点在于跟垂直领域内企业的需求不断磨合,这是一个长期的过程。一些场景,预想中觉得好做,但操作下来可能难度很大,或者不是刚需。”“现实购买场景复杂,商品品类太多,增加了数据标注以及类别定义的难度。”黄伟林说,“我们先聚焦于难度小或者刚需的环节。比如减少‘货损’是刚需,我们就在收银环节帮助识别货物与条码能否对应;无人零售柜则由于商品品类有限,识别难度降低。”黄伟林说:“目前来看,大家是想找一个好的应用场景,不断迭代算法和数据,教育市场,培养用户。”除了人脸识别、语音识别等主流外,一些小众细分领域也开始出现。“我们把设备放到工厂之后,就能根据设备发出的噪声,判断设备的磨损情况或者其他故障。是不是要加润滑油?车床刀具磨损程度如何,什么时候更换?等等。”硕橙科技创始人谭熠说。人工智能还能参与到创意活动中来。据了解,已经有音乐人工智能伴奏系统在中国亮相。人工智能通过数据分析与学习,找到相对固定模板,然后通过套用模板进行“创作”和演出。随着应用场景增多,如何判断不同领域与人工智能的结合成熟度?“有一些指标,首先是基础设施情况,包括算法的成熟度、行业数据完善程度等。”上海临港国际人工智能研究院最近发布了《2018年度人工智能产业格局及创新实践研究报告》,据其副院长李笙凯介绍,“一些领域如农业、教育,行业解决方案的个性化程度比较高,工业领域则面临设备核心数据获取难的问题,医疗领域也缺乏对应的病因和图像检查等数据,因此较难应用人工智能。”而金融等领域由于基础设施完善,积累了大量的用户行为数据、表现数据,与人工智能结合较好。“目前来看,应用最成熟的领域依次是广告营销、金融、公共安全、家居、零售、交通、医疗等。”李笙凯说。随着人工智能在智能安防、智能驾驶、无人零售等领域落地生根,细分领域内领军企业如商汤、地平线等公司已获得较高估值。在市场充满机会的同时,李笙凯也提醒:“由于时间尚短,各应用的市场仍需经过长期验证。”

大数据跟人工智能一个好一点

吉塞尔
逛山
了解大数据与人工智能的区别与联系,首先我们从认知和理解大数据和人工智能的概念开始。1、大数据大数据是物联网、Web系统和信息系统发展的综合结果,其中物联网的影响最大,所以大数据也可以说是物联网发展的必然结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等等。目前,大数据的价值主要体现在分析和应用上,比如大数据场景分析等。2、人工智能人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。3、大数据与人工智能大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。目前大数据相关技术已经趋于成熟,相关的理论体系已经逐步完善,而人工智能尚处在行业发展的初期,理论体系依然有巨大的发展空间。从学习的角度来说,如果从大数据开始学习是个不错的选择,从大数据过渡到人工智能也会相对比较容易。总的来说,两个技术之间并不存在孰优孰劣的问题,发展空间都非常大。

人工智能技术发展有哪些难题?

八珍汤
法外情
人工智能是抄对人脑智能的模拟,而人工智能的发展还面临三大挑战:首先,人脑智能的产生原理尚未研究清楚,“脑科学”研究还处于摸索阶段;其次,尽管计算机的发展迅速,但在数学和算法研究上还有待突破;最后,和人类学习知识一样,人工智能也需要通过学习大量数据来提升,这需要人工智能与产品和产业相结合,通过“实践”来提高人工智能水平。中国人工智能研究要想突破,就要从三个方面攻关。第一是开展脑科学、神经科学和人工智能等基础理论研究;第二是加强数学算法和统计识别模块等计算领域研究;第三是人工智能要与产业发展相结合,依托研究院所和企业开发人工智能应用,积累实验数据。此问题由colorreco回到。

“大数据分析”和“人工智能”的前景怎么样?

谁与
芙蓉传
了解大数据与人工智能的区别与联系3433653339,首先我们从认知和理解大数据和人工智能的概念开始。1、大数据大数据是物联网、Web系统和信息系统发展的综合结果,其中物联网的影响最大,所以大数据也可以说是物联网发展的必然结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等等。目前,大数据的价值主要体现在分析和应用上,比如大数据场景分析等。2、人工智能人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。3、大数据与人工智能大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。目前大数据相关技术已经趋于成熟,相关的理论体系已经逐步完善,而人工智能尚处在行业发展的初期,理论体系依然有巨大的发展空间。从学习的角度来说,如果从大数据开始学习是个不错的选择,从大数据过渡到人工智能也会相对比较容易。总的来说,两个技术之间并不存在孰优孰劣的问题,发展空间都非常大。

人工智能未来发展怎么样?

道不可有
达文西
目前,中国人工智3431336139能行业已经进入产业化阶段。根据中国国务院规划,2020年中国人工智能核心产业规模将达到1500亿元,并且此后十年将继续保持高速发展。2018年行业融资热度也持续走高,iiMedia Research(艾媒咨询)数据显示,2018年中国人工智能领域共融资1311亿元,增长率超过100%,投资者看好人工智能行业的发展前景,资本将助力行业更好发展。2019年1月18日,全球领先的新经济行业数据挖掘和分析机构iiMedia Research(艾媒咨询)权威发布《艾媒报告|2018中国人工智能产业研究报告——商业应用篇》。目前,中国人工智能行业已经进入产业化阶段。根据中国国务院规划,2020年中国人工智能核心产业规模将达到1500亿元,并且此后十年将继续保持高速发展。2018年行业融资热度也持续走高,iiMedia Research(艾媒咨询)数据显示,2018年中国人工智能领域共融资1311亿元,增长率超过100%,投资者看好人工智能行业的发展前景,资本将助力行业更好地发展。随着人工智能技术的进一步发展和落地,深度学习、数据挖掘、自动程序设计等领域也将在的应用场景中得到实现,人工智能技术产业化发展前景向好。中国人工智能产业规模预测根据规划,2020年中国人工智能的技术与应用水平将发展至世界先进水平,同时核心产业规模超过1500亿。2030年中国人工智能核心产业规模超过1万亿元。艾媒咨询分析师认为,中国人工智能产业的发展起步较晚,但是人工智能作为未来经济发展的新引擎,拥有较好的融资环境与政策环境。目前,中国人工智能产业正处于快速发展的阶段,随着人工智能的不断深入发展,技术商品化的进程完成,人工智能产业将进入更高的发展阶段。人工智能产业技术与应用突破2018年中国人工智能产业宏观发展环境分析2018年中国人工智能产业宏观发展环境分析iiMedia Research(艾媒咨询)数据显示,2018年中国人工智能领域融资额高达1311亿元,增长677亿元,增长率为107%。艾媒咨询分析师认为,虽然2018年人工智能融资事件数增长幅度较缓慢,但融资总额攀升,大额融资事件频发,行业资本变动更集中于头部企业。2018年中国人工智能产业宏观发展环境分析数据显示,2017年中国人工智能领域专利申请量为46284件,增长率为59%。2018年中国人工智能热点动态中国人工智能领域生态

人工智能产业将寻求哪三方面的突破?

浮城记
心斋
未来将扎实推进理论发展,加强新技术整合能力如今,“智能+”社会已步步临近,社会各界也正积极勾勒未来社会图景。国外人工智能巨头动作不断,在基础技术、应用领域方面都有诸多突破,可以总结为三点:基础研究能力强、跨界创新密集、人才红利持续发挥。我国在深度学习、识别技术等领域实力突出,在人工智能市场应用层面走在世界前列。但在基础技术、产业链跨界协同、核心人才培养方面则存有短板。业内专家呼吁,未来我国人工智能行业和学界应重点关注以上三项弱点,审时度势、全盘考虑、抓紧谋划、扎实推进,在巩固现有优势的同时,补足短板,推动中国人工智能产业可持续发展。基础层研究成人工智能“硬指标”人工智能研究可以分为基础层、技术层、应用层,美国在技术难度大、技术带动效应强的基础层方面,不断取得研究以及实践进展;而中国在基础层方面能力稍弱,在技术层和应用层发力。基础层主要指处理器、芯片等支撑人工智能技术的核心能力;技术层包括自然语言处理、计算机视觉、技术平台等通用技术;应用层是指自动驾驶、智能机器人等实际应用主体。人工智能浪潮的兴起,使得美国大公司纷纷进军基础层的研究。以芯片为例,美国的芯片制造企业英伟达推出了世界首款120万亿次级处理器Volta V100 GPU,可以将机器学习指令传达的效率从几周的时间缩短至几个小时,帮助客户更加快速地迭代并优化各自产品的上市时间。过去3年中,英伟达为深度学习提供了10倍的性能加速,被评论界称为“摩尔定律的平方”,保持目前的性能提升速率,到2025年,GPU将可实现比CPU快1000倍的性能。谷歌、亚马逊、微软、苹果等最初并不研发芯片的公司,也开始发力芯片和处理器,这使得美国在全球人工智能基础层研究地位进一步增强。微软公司公布了其人工智能芯片制造项目,展示了一款专门为微软增强现实眼镜HoloLens打造的新型芯片。谷歌已于2016年宣布了其深度学习芯片的研发,并声称,随着语音识别技术的爆发,高性能处理器TPU已为公司省下了打造15个新数据中心的成本。谷歌同时在与生物公司合作开发高效计算DNA信息的芯片。2017年4月,苹果公司宣布苹果将通过自主研发和生产芯片,进一步掌握产业链主导权。消息一出,苹果芯片供应商英国公司Imagination的股价应声暴跌。但是,中国在芯片基础研发领域仍然落后于美国企业,对进口芯片的需求居高不下。从事计算机视觉识别的中国公司“旷视科技”品牌与市场中心总经理谢忆楠表示,在图像识别领域,公司同时应用英伟达和英特尔的芯片,目前还没有国产芯片能够完全取而代之。英特尔中国研究院院长宋继强也承认,我国人工智能领域不足之处在于我们原创理论创新、基础人工智能研发能力还不太够。中国学者需要在理论上有所突破。地平线机器人技术创始人余凯表示,在PC电脑与移动互联网时代,我们都错失了如操作系统等基础平台性技术,人工智能时代需要迎头赶上。中国电子学会发布《中国机器人产业发展报告》指出,我国机器人领域核心技术积累不足,资金投入相对有限且分散,高端市场长期被外资企业占据,很大程度上以依托进口零部件和本体组装、集成为主营业务,虽有一定突破但基本上是被动地、跟随式发展,难以获得产业发展主动权。计算机学家、图灵奖唯一的华人得主姚期智表示,中国想在2030年实现世界主要人工智能创新中心的战略目标,首先要解决人工智能发展缺少理论的问题。中国在下一波人工智能的发展上,应取得一些原创性的、有知识产权的成果,而不是追赶别人发明的科技。跨界融合创新为智能生态“必修课”未来人工智能领域不仅仅是单一的技术和产品,而是一个整合的“生态系统”。数字技术将结合神经研究等医学领域、自动化机械臂等工业领域共同组成人工智能的底层技术。以人工智能为依托的机器人一方面会以“软件”形式融入社会,如自动翻译、图像识别等。另一方面也将通过集成“硬件”深入到百姓生活中,如特种机器人、医疗机器人等。正是在这种“共识”的指引下,“不务正业”几乎成为美国人工智能巨头都在做的事,从IBM、苹果,到谷歌、脸书、英伟达,所有的人工智能巨头都在尝试软件、硬件、应用场景的联通,不再单一专注于自己的传统业务,而是着眼布局未来。 2016年9月,谷歌、微软、脸书、亚马逊、IBM更是组成人工智能联盟,大有形成合力、制定行业标准之意。目前,谷歌的跨界非常广泛,跨越了芯片、机器学习平台、软件、云计算等各个领域。其人工智能学习系统TensorFlow目前是全世界应用最为广泛的人工智能软件平台。研发芯片起家的高通,也推出了自己的摄像头Spectra Mole,旨在优化VR、AR的效果。最近,这一摄像头又添加了一些新的功能,如深度检测和生物认证,用户可以通过虹膜扫描来解锁认证。IBM中国研究院认知交互技术总监秦勇表示,IBM打造人工智能平台,最终目的就是形成生态圈,可以满足客户的不同需要。比如IBM的WDC(Watson Developer Cloud),已经有很多应用程序编程接口公布出来,比如知识图谱、语音识别、计算机视觉、性格分析、对话管理等等。在教育领域和芝麻街合作,利用人工智能帮助小孩,用游戏的方式来做辅助学习。这一平台还和美敦力(Medtronic)合作,提前两三小时就可以准确预测一个人的血糖指标。英伟达不仅有芯片,还发布了高效的深度学习软件平台,为客户提供综合全面的服务,其客户涵盖汽车、虚拟现实、图像识别、基因分析等各领域。电商起家的亚马逊,凭借其深度学习能力,崛起成为人工智能的巨头。去年,其发布的三大人工智能技术(图像识别、自动语音发音、语音互动)广受欢迎,中国的社群电商软件“小红书”就利用了亚马逊的人工智能技术开发了人脸识别痘痘的功能。除以技术优势加速全链条布局外,国外巨头凭借投资并购等资本运作手段,提升自身技术实力,在人工智能领域迅速占据制高点,也有部分巨头在我国建立产业基地,抢占中国市场。如微软收购位于多伦多的人工智能初创企业Maluuba,谷歌收购数据科学公司Kaggle。库卡也宣布建设中国二期厂房,继续扩大产能。而中国人工智能产业的跨界互动能力不足,部分企业存在短期套利思维。业内人士认为,从技术到产品的跨越非常之困难。不同于硅谷技术公司的“一呼百应、迅速抱团”,中国企业之间的“门户之见”较深,产业链倾向于为了短期利益,维护已有的客户链条,而不会积极拥抱新产品,这使得一项技术需要投产时,找生产商就十分困难,更别提以后的推广、应用了。另一方面,中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃认为,目前市场上有很多风险基金来主导基础研究型公司,这对正常的创新过程会产生一定负面影响。特定阶段确实需要一些特殊的措施,但无论如何要给有能力、愿意做研究的人一个安静的空间,这才是科研创新真正的源头。王飞跃认为,很多人蜂拥而至进入智能行业,其中不乏“语言创新”、炒作概念的PPT公司,好多核心硬件还要从外国进口,企业技术能力“配不上”它的名字,这是需要我们反思的地方。《中国机器人产业发展报告》建议,围绕市场需求,加强新技术之间的整合能力,打造“政产学研用”紧密结合的协同创新载体。既要围绕智慧工厂、智能家居和智慧城市开展细分领域示范工程,也要打造重点领域机器人应用系统集成商和综合解决方案服务商,推进全产业链协同发展。人才队伍建设是产业发展“脊梁柱”任何产业的发展都依赖高素质的人才。美国人工智能产业的发展,得益于过去几十年来高校、科研院所没有停止过的探索,美国从而成为世界人工智能人才的最大输出地。而中国人工智能人才则较为稀缺。腾讯研究院发布的《中美两国人工智能产业发展全面解读》,从企业人数分布可以看出中美之间的巨大差异。报告显示,截至2017年6月,美国共有1078家人工智能企业,员工数量为78700名;中国有592家人工智能企业,员工数量为39200名,约为美国的50%。分领域来看,在处理器/芯片领域,美国员工人数是中国的13.8倍,美国17900人,中国1300人。中国在技术层领域的企业人数也远远落后于美国,仅在智能机器人领域人才稍多,为6400人,是美国同领域人数的3倍。根据全球职场社交平台“领英”的数据,7成美国人工智能人才从业10年以上,而中国仅有4成相关人才有这样的从业经验。报告分析,这源于中国人工智能产业起步比美国晚,人才培养模式尚存差距。中国高校在很长时间内并没有人工智能专业,而美国是人工智能概念的诞生地,基本上大院校都有人工智能专业和研究方向。根据美国国家科技委员会的人工智能全球大学排名,前20名中有16所是美国大学,这些大学源源不断地向科技企业输送人才。业内人士表示,由于人才匮乏,人工智能工程师的年薪水涨船高。博士毕业进入企业,起薪或可高达百万元,“否则根本留不住人”。而且,即便这样的人也很难“上手就用”,都要在公司经过数月至一年的专业培训。目前,中国正在快速追赶美国人工智能人才的培养步伐。从论文发表数量来看,华人作者的领先优势日益明显。在“深度学习”领域,中国的论文数量从2014年开始超越美国。专家认为,人才培养是“智能+”发展的关键,而且,人才培养要与重点项目相结合,真正做到核心人才本土化、核心项目自主化。《中国机器人产业发展报告》建议,应建立机器人行业亟须的多层次、多类型技能人才培养体系,建立校企联合培养人才的新机制。同时,建立培养标准体系,运用职业培训和职业资格制度加深与汽车、电子、化工、消防等相关行业合作,实现人才培养与企业需求的良好对接。国务院2017年印发《新一代人工智能发展规划》,提到将“加快培养聚集人工智能高端人才”。伴随着巨大的市场需求和应用场景,我国有望吸引人才来华从事人工智能行业。在面向2030年对我国人工智能发展进行的战略性部署中,我国新一代人工智能发展规划也明确提出了我国人工智能发展的“三步走”目标:第一步,到2020年,人工智能总体技术和应用与世界先进水平同步,人工智能产业进入国际第一方阵,成为我国新的重要经济增长点;第二步,到2025年,人工智能基础理论实现重大突破、技术与应用部分达到世界领先水平,人工智能产业进入全球价值链高端,成为带动我国产业升级和经济转型的主要动力,智能社会建设取得积极进展;到2030年,人工智能理论、技术与应用总体达到世界领先水平,我国成为世界主要人工智能创新中心,人工智能产业竞争力达到国际领先水平。专家认为,要想让机器人渗透到人们生活,真正实现智能社会,一定要把相应的基础设施建设好,建立知识库、大数据库、面向各类具体问题的智能系统等。“这不仅要有技术,还涉及整个社会体系、服务体系和治理体系等。”业内人士呼吁,要加快机器人向各领域的应用,实现人机协调、跨界融合、共创分享,营造有利于机器人发展的良好生态。瑞银研究报告显示:至2030年AI每年将为亚洲贡献经济价值高达1.8万亿至3.0万亿美元,将对金融服务、医疗保健、制造、零售和交通等行业产生巨大影响。这些行业加起来,相当于目前亚洲GDP的三分之二。据统计,2000至2016年,中国人工智能企业数量累计增长1477家,融资规模达27.6亿美元。其中,2014至2016年三年是中国人工智能发展最为迅速的时期。这三年里新增的人工智能企业数量占累计总数的55.38%。另据艾瑞咨询公开数据,中国人工智能产业规模2016年已突破100亿元。面对优势,还需戒骄戒躁;面对补足,还需踏实补强;我国应在人工智能产业发展的浪潮中争当“弄潮儿”。未来已来,当时代的钟声缓缓敲响,新科技革命和产业变革将是最难掌控但必须面对的不确定性因素之一,抓住了就是机遇,抓不住就是挑战,必须在日新月异的科技大变革中、在国际合作与竞争的征程中加速前进。