欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2009年数农考研大纲

道兼于天
去当当网买一本不就得了,而且新大纲很快就下来了,要09年的干嘛等等吧

考研数学(农)的复习范围是否和数三的考试范围一样

希运
梅花巾
不一样 具体的建议你在网上下载最新的农学联考考试大纲 看看其中数学部分的范围和要求 祝好运!一样的,我同学考的就是,比较简单,考了146分,就错了一个小题。考上浙大了,牛吧

全国数学农考研需要哪几本书

寸心草
天月
全国统考数学一、二、三用书有:高等数学(绿皮,高教版,同济应用数学室主编)线性代数(高教版,同济应用数学室主编。紫皮)概率论与数理统计(浙江大学版本)数学(农)好像也是全国统一命题,只是试题难度略微降低,可以使用上述教材,这三本书是权威,不过要注意数学(农)考试大纲,可能不需要全部用,或者需要全部用。就象数学二不用概率统计一样。具体还是看看上一年大纲!!《高等数学18讲》、《线性代数10讲》和《概率论与数理统计8讲》这三本书是专门为参加2013年全国硕士研究生入学统一考试的考生们编写的复习指导用书,供考生在考研复习的全过程中使用。这三本书的编写具有以下特点:第一,从考试中来,到考试中去面对考试,首先要做到“知彼”,就是要懂得这门考试到底要考什么. 对于考研来说,只有一本官方文件:《全国硕士研究生入学统一考试数学考试大纲》(以下简称《考试大纲》),教育部考试中心严格按照《考试大纲》命题,那么这三本书也严格按照《考试大纲》编写,与《考试大纲》无缝接轨。科学、严谨、新颖的内容设计,对《考试大纲》的所有知识点做了权威详实的诠释.第二,从学生中来,到学生中去面对考试,还要做到“知己”,就是要懂得考生自己到底什么水平. 哪里是考生熟悉的,简单的考点,哪里是考生陌生的,不易掌握的难点,这三本书的写作团队的老师们都是考研教学一线上的辅导专家,对于考生们需要什么了如指掌,所以书的内容文笔鲜活,娓娓道来,讲重点讲难点,贴近考生,无论是作为辅导班的教材,还是考生自学,都是难得的辅导资料.第三,重视数学思维的讲解与训练一般认为,数学题型很重要. 给出一种题型,掌握这种题型的解题步骤,然后去套这个步骤就可以了. 对于考试,我不否认这种说法有一定的合理之处,但我也不完全赞同它. 要想真正掌握数学知识,达到较高的数学解题水平,必须在复习的过程中,重视每个概念、定理和结论背后的数学思维方法,甚至可以在老师的引导下去欣赏和体味这思维背后的哲学涵义等等,这个过程,是学习数学不可或缺的.第四,重视经典好题的分析与解答2012年的考卷吸取2011年“难度控制”的成功经验,继续保持“中等难度”,整张试卷没有真正的难题。但是明显的,题目新颖程度增加,计算量增加,如果考生只会套题型,计算能力不强,很多考生可能做不完、考不好.所以,本书的例题既注重了题目的新颖性,又把握了题目的计算量,例题丰富、贴近考研,考生一定要把这三本书中的例题好好吃透.本套书是多位考研一线专家老师集体智慧的结晶,写作过程中充分结合了同学需求及授课效果. 本套书以讲为单位,每讲分为五部分:导语、考试大纲、知识体系、考试内容分析、典型例题分析.(1)导语.对本讲内容的主要概括以及本讲在考试中的地位等的说明.(2)考试大纲.让同学们清楚地知道考研数学到底“考什么”,知道哪些内容只需了解,哪些内容则要重点掌握,这样在复习备考过程中才能真正做到有的放矢.(3)知识体系.通过逻辑框架将本讲所有知识点完美呈现,简洁明了.(4)考试内容分析.对考研数学的每个考点都做了全面细致地讲解,同时每个考点都紧跟着经典题目供同学们强化练习,正所谓“光说不练假把式,光练不说真把式,连说带练全把式”.(5)典型例题分析.书中囊括了历年真题、大学数学竞赛试题,各大名校期末试题等.相信同学们若能把这部分题目做好吃透,那么考研数学满分指日可待.

考研数学分类中的数学(农)指的是什么?

驱魔者
是狸德也
数学(农)指农学统考里的公共基础科目数学。数学(农)的分值为150分,参考书目:1、《线性代数》 吴传生等编著, 高等教育出版社。2、《概率论与数理统计》 吴传生等编著, 高等教育出版社 。3、《概率论与数理统计》 浙江大学盛骤等编著, 高等教育出版社。扩展资料农学统考的试题内容1、试卷每科满分150分,考试时间180分钟,答题方式为闭卷、笔试。2、考试内容结构:(1)农学门类公共基础:数学 150分,化学 150分,其中任选一科考试;农学学科基础综合:植物生理学与生物化学 150分,动物生理学与生物化学 150分,其中任选一科考试。3、农学考研优秀院校推荐(1)中国农业大学农学与生物技术学院(2)南京农业大学农学院(3)西北农林科技大学农学院(4)浙江大学农业与生物技术学院参考资料来源:百度百科—统考农学参考资料来源:百度百科—农学统考

求09考研数学(农)大纲

复于不惑
譬犹狗马
说起考研数学大纲,很多考生只是泛泛的知道大纲给了我们考试的范围,以至于有的考生在买了大纲之后,只会看看哪部分大纲没有要求,则不需要看,其次把大纲上的近几年的真题看看就草草结束大纲的使命;有的考生甚至连大纲都没有,认为全复习,就不会拉掉。第一种考生应该占大多数,他们至少认为大纲有用,但是没有充分利用大纲的作用;第二种考生属于极少数,他们认为大纲没有用,不需要有。这两类考生疏忽的地方在哪儿呢?主要还是没有真正抓住大纲的作用。下面我们就来详细谈谈大纲的作用。所谓考研数学大纲,也就是我们研究生入学数学考试的准则。它不仅仅是考生复习的准则也是命题老师必须遵守的法律。凡是大纲不要求的,命题老师不能命题,所以我们根本不需要复习。这点绝大多数考生都把握住了,但是很多考生没有注意到考试大纲的细节,也就是大纲对涉及知识点的要求不同。考研数学从本质上来说,就是考察三基本:基本概念,基本理论,基本方法,而大纲对三基本的要求有不同的修饰词。对基本概念、基本理论,大纲用的修饰词是理解或者了解;对基本方法,大纲用的修饰词是掌握或会求、会计算。这几个修饰词的作用与大家在大学考试之前老师划范围的作用是等价的,所以大家千万不要小看这几个修饰词。我们先来看对基本概念、基本理论的两个修饰词:理解和了解。细心的同学应该从字面上就看出之间的差别。如果是要求理解,说明对这部分知识的要求比较强,出题的频率比较高,所以复习的时候,投入在上面的时间尽量多一些,首先从教材上把这部分知识通过自己的语言理解,其次从辅导书中把涉及到这些知识的题型都练熟,这样才抓住了重点。比如,大纲对高数中导数的概念用的是理解,几乎年年都会涉及导数定义的题,所以我们就必须在理解导数定义的基础上,多练一些题,把它用熟;如果是要求了解,说明大纲对其的要求比较弱一点,出题的频率也比较低,通常不会年年都出考题,所以复习的时候,只需要简单了解一下,会简单应用其做题就可以。比如,概率论中的切比雪夫不等式,大纲对其的要求是了解,所以它在考研中出现的频率也比较低,几乎是隔上几年考一次,大家只需要记住这个不等式,会直接套用就可以。我们再来看对基本方法的修饰词:掌握和会求、会计算。通过上面的分析,大家心里可能已经有数了。如果是要求掌握的方法,那就必须要掌握,命题的频率相当高,必须通过大量做题把这种方法掌握,比如,像高数中,大纲要求掌握用洛比达法则求未定式极限的方法,年年考题中都会用到这种方法,所以这个方法必须要掌握,多练习这方面的例题,把涉及到的情况都练到。如果是要求会求会计算的方法,这种出题的频率不是很高,大家就可以在上面花费的时间少一点,简单了解这种方法,会针对性的利用这种方法练几个题就可以。比如,大纲要求会求有理函数、三角函数和简单无理函数的积分,这部分考题出现的频率就比较低,只需要了解一下求法,会利用求法做几个题就可以。了解了大纲对知识点的不同要求后,大纲的重要作用就显现出来了,它除了告诉我们哪些内容不需要复习外,还告诉了我们,哪些内容我们需要重点复习,哪些内容我们只需要简单了解。这样我们才能有的放矢的复习,把有限的时间合理的分配。把大量的时间花在重点内容上,少量的时间放在次重点的内容上。以上是根据多年同学对考研数学大纲的反应而总结出来的一些规律,给同学们一点建议,仅供参考。

有谁有2009考研数农大纲??

春闺怨
化妆室
2009年考研数学大纲内容 数三 微积分 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性.单调性.周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.了解数列极限和函数极限(包括左极限与右极限)的概念. 6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法. 7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系. 8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性.最大值和最小值定理.介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值 考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程. 2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线. 9.会描述简单函数的图形. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法. 3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题. 4.了解反常积分的概念,会计算反常积分. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值.最大值和最小值 二重积分的概念.基本性质和计算 无界区域上简单的反常二重积分 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题. 5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算. 五、无穷级数 考试内容 常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径.收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散.收敛级数的和的概念. 2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数. 6.了解 . . . 及 的麦克劳林(Maclaurin)展开式. 六、常微分方程与差分方程 考试内容 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程. 4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.了解一阶常系数线性差分方程的求解方法. 7.会用微分方程求解简单的经济应用问题. 线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组. 2.掌握非齐次线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.掌握用初等行变换求解线性方程组的方法. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质. 六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念. 2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形. 3.理解正定二次型.正定矩阵的概念,并掌握其判别法. 概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 二、随机变量及其分布 考试内容 随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求 1.理解随机变量的概念,理解分布函数 的概念及性质,会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用. 3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为 5.会求随机变量函数的分布. 三、多维随机变量的分布 考试内容 多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布 考试要求 1.理解多维随机变量的分布函数的概念和基本性质. 2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布. 3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系. 4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义. 5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布. 四、随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征. 2.会求随机变量函数的数学期望. 3.了解切比雪夫不等式. 五、大数定律和中心极限定理 对比:无变化 六、数理统计的基本概念 对比: 1.考试要求1中理解“总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念”,改为了解“总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念”. 2.考试要求2中理解“标准正态分布、 分布、 分布和 分布的上侧 分位数”改为了解“标准正态分布、 分布、 分布和 分布的上侧 分位数”. 3.考试要求3中去掉“正态总体的样本均值差、样本方差比的抽样分布”. 4.考试要求4中理解“经验分布函数的概念和性质”改为了解“经验分布函数的概念和性质”. 5.考试要求4中去掉“会根据样本值求经验分布函数”. 七、参数估计 对比: 1.考试内容去掉“估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体的方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计”. 2.考试要求1中理解“参数的点估计、估计量与估计值的概念”改为了解“参数的点估计、估计量与估计值的概念”. 3.考试要求1中去掉“了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性”. 4.考试要求3去掉“掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法”. 5.考试要求4去掉“掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法”. 八、假设检验 对比:整章删除

请问考研农数(代号314)是全国统考吗?

风水劫
条理
是。

考研中数学农是什么意思啊?

夫子言道
不离不劳
数学农不同于数一数二数三,难度低于数三。农学统考中数学的地位及其学科特点: 研究生入学考试中考生可以根据自身学习基础和志愿从事研究工作的需要任选数学和化学。数学相比化学,知识点要少,但要更灵活。数学是各类研究都要使用的基础学科,在前期的试验设计,方案选择,试验过程中的数据分析,结果推断,建立模型,直至论文完成等工作中都是不可缺水的知识体系。除此外,研究数学可以锻炼逻辑推断能力,并使人形成严谨、抽象的思维方式,有利于思考问题和解决问题。 今昔对比: 农学统考以后,不再由各农业院校自由选择试题出处,而以中国农业大学历届考研所指定的教材和考试模式为准。鉴于各个地方农业院校教学内容和水平层次不一,整体难度较原来有所下降,但同时考察会更加灵活、多样。

农学考研科目

三生
无旧无新
一、农学考研科目:1、政治理论2、英语 3、数学(农)、4、农学专业基础综合考试涵盖农学门类公共基础(数学、化学)和农学学科基础综合(植物生理学与生物化学、动物生理学与生物化学)等学科基础课程。二、农学类专业就业方向:1、植物生产类一般可以都到农业、园林及植物所等科研、生产及管理机构工作。2、动物生产类一般可以到农业、园林及植物所等部门从事科研、技术开发、生产及管理等工作。3、水产类一般可以到水产部门工作,也可到海洋、海运、轻工、外贸、环保等部门从事科研工作,也可选择这方面的项目进行操作。4、动物医学类一般可以选择到各级兽医防治、科研、教育、生产和行政管理部门及动物检疫站、商品检验局、生物药品制造及动物食品加工单位工作。