欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

有趣的逻辑思维题 数学难题

赫默尔
昔者
去百度文库,查看完整内容>内容来自用户:瞎猫0620最全数学逻辑思维题(吐血整理)(可用于小学及初中非专业竞赛课程)1、容易题(活跃课堂,所有人都能跟上节奏)1、填空并说明理由(),(),(),,24678答案:(门前大桥下)(游过一群鸭)(快来快来数一数),24678备注:活跃课堂,出其不意2、冰箱、空调、饮水机、洗衣机打麻将谁输了?答案一:麻将(四打一)答案二:饮水机(脑子里有水)3、买汽水一元一瓶水,3个空瓶换一瓶,10元最多可以喝多少瓶水?(15,有借有还)变式1:一元一瓶水,3个空瓶换一瓶,两个瓶盖换一瓶,20元最多可以喝多少瓶水?(120)变式2:一元一瓶水,4个空瓶换一瓶,6个卡片换一瓶,20元最多可以喝多少瓶水?答案:参照实际价值来判断,对于变式一,水的真实价值就是六分之一元4、小A和小B进行着一个小游戏。小A和小B在桌旁对坐着,桌上有4个硬币,相互紧凑摆成正方形。小A被蒙住了眼睛,每次小A可以选择一些硬币进行翻面,小A翻完后小B可以任意旋转4个硬币,但不能翻转,依次循环,任何时候硬币全部正面朝上或者全部反面朝上,小A获胜。求是否存在小A必胜的策略?5、七夕节,王子向公主求婚国王为了考验王子,就让仆人端来了两个盆,其中一个装着10枚金币,另一个装着10枚同样大小的银币。把王子的眼睛蒙上,并把两个盆的位置随意调换,请王子任意选一个,从里

在科学史上找几个这样的例子(原来是对的,后来是错的)

化醇
等着我
我觉得数学的例子不会太典型,因为数学本来就靠的是很严谨的推理,不太会得出错的结论,至多是人们在一个时期内普遍的猜测是错的,或是由于不严谨产生的错误。比如非欧几何,它并不是说第五公设(平行公理)是错的,而是说它与前面的公理独立,不能由其他公理推出。非欧几何就是满足其它公理,但唯独不满足平行公理的几何。非欧几何的存在证明了第五公设不是一个定理,而是公理。从而结束了人们试图证明它的努力。凑合说几个例子吧:毕达哥拉斯学派认为任意两条线段可公度(这实际上否定了无理数的存在)。但被希伯索斯推翻了(他因此被投入水中,恐怖吧!)。实际上,无理数比有理数多。很长一段时间内人们都在寻找一元五次方程的一般代数解,后被阿贝尔证明这不可能。人们曾认为连续函数只能有少数点不可导,但外尔斯特拉斯举出了处处连续不可导的函数例子,后来发现这样的函数(病态函数)远比常见的可导的函数多。举一个不严谨导致错误的例子:求和:S=1-1+1-1+1-……正确结论是这个和不存在(因为它的部分和不收敛)。但在严格的极限理论建立以前人们得到过许多错误答案。甚至连大师欧拉也误认为S=1/2 !先说这么多,不知是否合你要求?呵呵。

语文问题

法与情
奇语
罗素悖论 一天,萨维尔村理发师挂出一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。 因为,如果他给自己理发,那么他就属于自己给自己理发的那类人。但是,招牌上说明他不给这类人理发,因此他不能自己理。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理。由此可见,不管怎样的推论,理发师所说的话总是自相矛盾的。 这是一个著名的悖论,称为“罗素悖论”。这是由英国哲学家罗素提出来的,他把关于集合论的一个著名悖论用故事通俗地表述出来。 1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为它们的基础。到19世纪末,全部数学几乎都建立在 集合论的基础之上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年罗素提出的理发师故事反映的悖论,它极 为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。 此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的革命。诺伊曼 诺伊曼(1903~1957),美籍匈牙利数学家,美国科学院院士。 诺伊曼出生在一个犹太银行家的家庭,是位罕见的神童。他8岁掌握微积分,12岁读懂《函数论》。在他成长的道路上,曾有这样一段有趣的故事:1913年夏天,银行家马克斯先生登出一则启示,愿以10倍于一般教师的聘金,为11岁的长子诺伊曼聘请一位家庭教师。尽管这诱人的启示,曾使许多人怦然心动,但终没有人敢去教导这样倾城皆知的神童……他在21岁获得物理-数学博士之后,开始了多学科的研究,先是数学、力学、物理学,又转到经济学、气象学,而后转向原子弹工程,最后,又致力于电子计算机的研究。这一切,使他成为不折不扣的科学全才。他的主要成就是数学研究。他在高等数学的许多分支中都作出了重要贡献,其最卓越的工作 是开辟了数学的一个新分支------对策论。1944年出版了他的杰出著作 《对策论与经济行为》。第二次世界大战期间,为第一颗原子弹的研制作出重要贡献。战后 ,运用他的数学才能指导制造大型电子计算机,被人们誉为电子计算机之父。高 斯 高斯(C.F.Gauss,1777.4.30-1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。 在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使"我们失去了一位天才"。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。 在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是"欧洲最伟大的数学家",为此她激动得热泪盈眶。 7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。 当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。 高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:"你已经超过了我,我没有什么东西可以教你了。"接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。 布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大家,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时—虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家-又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:"献给大公","你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究"。 1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:"对我来说,死去也比这样的生活更好受些。" 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 高斯的学术地位,历来为人们推崇得很高。他有"数学王子"、"数学家之王"的美称、被认为是人类有史以来"最伟大的三位(或四位)数学家之一"(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是"人类的骄傲"。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。 高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18—19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。 1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。 高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。 笛卡尔 解析几何的产生 十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。 1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。 笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。 从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。 为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。 具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。 解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。 费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。 笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。解析几何的基本内容 在解析几何中,首先是建立坐标系。如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。在空间坐标系中还有球坐标和柱面坐标。 坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究几何学,通常就叫做解析法。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。 解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……”解析几何的应用 解析几何又分作平面解析几何和空间解析几何。 在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。 在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。 椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。 总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。 运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。 坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。 刘徽 (生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作. 《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目. 刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人. 刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.莱布尼兹 莱布尼兹是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。 生平事迹 莱布尼兹出生于德国东部莱比锡的一个书香之家,广泛接触古希腊罗马文化,阅读了许多著名学者的著作,由此而获得了坚实的文化功底和明确的学术目标。15岁时,他进了莱比锡大学学习法律,还广泛阅读了培根、开普勒、伽利略、等人的著作,并对他们的著述进行深入的思考和评价。在听了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。 20岁时他发表了第一篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。 莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作。他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。1700年被选为巴黎科学院院士,促成建立了柏林科学院并任首任院长。 始创微积分 17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼兹在1673-1676年间也发表了微积分思想的论著。以前,微分和积分作为两种数学运算、两类数学问题,是分别加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。只有莱布尼兹和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。 然而关于微积分创立的优先权,数学上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿。莱布尼兹在1684年10月发表的《教师学报》上的论文,"一种求极大极小的奇妙类型的计算",在数学史上被认为是最早发表的微积分文献。牛顿在1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:"十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外。"因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的。牛顿从物理学出发,运用集合方法研究微积分,其应用上地结合了运动学,造诣高于莱布尼兹。莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他发明了一套适用的符号系统,如,引入dx 表示x的微分,∫表示积分,dnx表示n阶微分等等。这些符号进一步促进了微积分学的发展。 1713年,莱布尼兹发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。 莱布尼兹在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。莱布尼兹曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在后来的研究中,莱布尼兹证明了自己结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论。此外,莱布尼兹还创立了符号逻辑学的基本概念,发明了能够进行加、减、乘、除及开方运算的计算机和二进制,为计算机的现代发展奠定了坚实的基础。 丰硕的物理学成果 莱布尼兹的物理学成就也是非凡的。他发表了《物理学新假说》,提出了具体运动原理和抽象运动原理,认为运动着的物体,不论多么渺小,他将带着处于完全静止状态的物体的部分一起运动。他还对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型,并在《教师学报》上发表了"关于笛卡儿和其他人在自然定律方面的显著错误的简短证明",提出了运动的量的问题,证明了动量不能作为运动的度量单位,并引入动能概念,第一次认为动能守恒是一个普通的物理原理。他又充分地证明了"永动机是不可能"的观点。他也反对牛顿的绝对时空观,认为"没有物质也就没有空见,空间本身不是绝对的实在性","空间和物质的区别就象时间和运动的区别一样,可是这些东西虽有区别,却是不可分离的"。在光学方面,莱布尼兹也有所建树,他利用微积分中的求极值方法,推导出了折射定律,并尝试用求极值的方法解释光学基本定律。可以说莱布尼兹的物理学研究一直是朝着为物理学建立一个类似欧氏几何的公理系统的目标前进的。 发明乘法计算机 德国人莱布尼兹发明了乘法计算机,他受中国易经八卦的影响最早提出二 进制运算法则。莱布尼兹对帕斯卡的加法机很感兴趣。于是,莱布尼兹也开始了对计算机的研究。1672年1月,莱布尼兹搞出了一个木制的机器模型,向英国皇家学会会员们做了演示。但这个模型只能说明原理,不能正常运行。1674年,最后定型的那台机器,就是由奥利韦一人装配而成的。莱布尼兹的这台乘法机长约1米,宽30厘米,高25厘米。它由不动的计数器和可动的定位机构两部分组成。整个机器由一套齿轮系统来传动,它的重要部件是阶梯形轴,便于实现简单的乘除运算。莱布尼兹设计的样机,先后在巴黎、伦敦展出。由于他在计算设备上的出色成就,被选为英国皇家学会会员。 中西文化交流之倡导者 莱布尼兹对中国的科学、文化和哲学思想十分关注,是最早研究中国文化和中国哲学的德国人。他向耶酥会来华传教士格里马尔迪了解到了许多有关中国的情况,包括养蚕纺织、造纸印染、冶金矿产、天文地理、数学文字等等,并将这些资料编辑成册出版。他认为中西相互之间应建立一种交流认识的新型关系。在《中国近况》一书的绪论中,莱布尼兹写道:"全人类最伟大的文化和最发达的文明仿佛今天汇集在我们大陆的两端,即汇集在欧洲和位于地球另一端的东方的欧洲--中国。""中国这一文明古国与欧洲相比,面积相当,但人口数量则已超过。""在日常生活http://post..com/f?kz=116269554

牛顿三个定律

良知
鬼谋
【定义】 牛顿运动定律是由牛顿(Sir Isaac Newton)总结于17世纪并发表于《自然哲学的数学原理》的牛顿第一运动定律(Newton's first law of motion)即惯性定律(law of inertia)、牛顿第二运动定律(Newton's second law of motion)和牛顿第三运动定律(Newton's third law of motion)三大经典力学基本定律的总称。【牛顿第一运动定律】 一切物体在任何情况下,在不受外力的作用时,总保持静止或匀速直线运动状态。〖内容〗 一切物体在任何情况下,在不受外力的作用时,总保持静止或匀速直线运动状态。 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。这就是牛顿第一定律。 牛顿第一定律还可缩写成:动者恒动,静者恒静。 A particle will stay at rest or continue at a constant velocity, unless acted upon by an external unbalanced force。〖说明〗 物体都有维持静止和作匀速直线运动的趋势,因此物体的运动状态是由它的运动速度决定的,没有外力,它的运动状态是不会改变的。物体的保持原有运动状态不变的性质称为惯性(inertia)惯性的大小由质量量度。所以牛顿第一定律也称为惯性定律(law of inertia)。牛顿第一定律也阐明了力的概念。明确了力是物体间的相互作用,指出了是力改变了物体的运动状态。因为加速度是描写物体运动状态的变化,所以力是和加速度相联系的,而不是和速度相联系的。在日常生活中不注意这点,往往容易产生错觉。 〖注意〗 (1)牛顿第一定律并不是在所有的参照系里都成立,实际上它只在惯性参照系里才成立。因此常常把牛顿第一定律是否成立,作为一个参照系是否惯性参照系的判据。 (2)牛顿第一定律是通过分析事实,再进一步概括、推理得出的。我们周围的物体,都要受到这个力或那个力的作用,因此不可能用实验来直接验证这一定律。但是,从定律得出的一切推论,都经受住了实践的检验,因此,牛顿第一定律已成为大家公认的力学基本定律之一。 〖牛顿第一定律的发现及总结〗 300多年前,伽利略对类似的实验进行了分析,认识到:运动物体受到的阻力越小,他的运动速度减小得就越慢,他运动的时间就越长。他还进一步通过进一步推理得出,在理想情况下,如果水平表面绝对光滑,物体受到的阻力为零,它的速度讲不会减慢,这是将以恒定不变的速度永远运动下去。 伽利略曾经专研过这个问题,牛顿曾经说过:“我是站在巨人的肩膀上才成功的。”这句话就是针对伽利略的。所以牛顿概括了前人的研究结果,总结出了著名的牛顿第一定律。【牛顿第二运动定律】 〖内容〗 物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。〖表达式〗 ∑F=ma或F合=ma〖说明〗 (1)牛顿第二定律是力的瞬时作用规律。力和加速度同时产生、同时变化、同时消逝。 (2)F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向。 (3)根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=max列方程。〖牛顿第二定律的五个性质〗 (1)同体性:F合、m、a对应于同一物体。 (2)矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。 (3)瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。 (4)相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。 (5)独立性:作用在物体上的各个力,都能各自独立产生一个加速度,各个力产生的加速度的失量和等于合外力产生的加速度。〖适用范围〗 (1)只适用于低速运动的物体(与光速比速度较低)。 (2)只适用于宏观物体,牛顿第二定律不适用于微观原子。 (3)参照系应为惯性系。【牛顿第三运动定律】 两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。 说明:要改变一个物体的运动状态,必须有其它物体和它相互作用。物体之间的相互作用是通过力体现的。并且指出力的作用是相互的,有作用必有反作用力。它们是作用在同一条直线上,大小相等,方向相反。〖内容〗 两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。〖表达式〗 F=-F' (F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)〖说明〗 要改变一个物体的运动状态,必须有其它物体和它相互作用。物体之间的相互作用是通过力体现的。并且指出力的作用是相互的,有作用必有反作用力。它们是作用在同一条直线上,大小相等,方向相反。 〖牛顿第三定律 〗 内容:两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。 说明:要改变一个物体的运动状态,必须有其它物体和它相互作用。物体之间的相互作用是通过力体现的。并且指出力的作用是相互的,有作用必有反作用力。它们是作用在同一条直线上,大小相等,方向相反。 另需要注意: (1)作用力和反作用力是没有主次、先后之分。同时产生、同时消失。 (2)这一对力是作用在不同物体上,不可能抵消。 (3)作用力和反作用力必须是同一性质的力。 (4)与参照系无关。 牛顿第三定律: 两个物体间的作用力和反作用力总是大小相等,方向相反,并且作用在同一直线上 F1=-F2 ①力的作用是相互的。同时出现,同时消失。 ②相互作用力一定是相同性质的力 ③作用力和反作用力作用在两个物体上,产生的作用不能相互抵消。 ④作用力也可以叫做反作用力,只是选择的参照物不同 ⑤作用力和反作用力因为作用点不在同一个物体上,所以不能求合力 2.相互作用力和平衡力的区别 ①相互作用力是大小相等、方向相反、作用在两个物体上、且在同一直线上的力;两个力的性质是相同的。 ②平衡力是作用在同一个物体上的两个力,大小相同、方向相反,并且作用在同一直线上。两上力的性质可以是不同的。 ③相互平衡的两个力可以单独存在,但相互作用力同时存在,同时消失 例如:物体放在桌子上,对于物体所受重力与支持力,二者属于平衡力,将物体拿走后支持力消失,而重力依然存在. 而物体在桌子上,物体所受的支持力与桌面所受的压力,二者为一对作用力与反作用力.物体拿走后,二者都消失.〖适用范围〗 牛顿运动定律是建立在绝对时空以及与此相适应的超距作用基础上的所谓超距作用,是指分离的物体间不需要任何介质,也不需要时间来传递它们之间的相互作用。也就是说相互作用以无穷大的速度传递。 除了上述基本观点以外,在牛顿的时代,人们了解的相互作用。如万有引力、磁石之间的磁力以及相互接触物体之间的作用力,都是沿着相互作用的物体的连线方向,而且相互作用的物体的运动速度都在常速范围内。 在这种情况下,牛顿从实验中发现了第三定律。“每一个作用总是有一个相等的反作用和它相对抗;或者说,两物体彼此之间的相互作用永远相等,并且各自指向其对方。”作用力和反作用力等大、反向、共线,彼此作用于对方,并且同时产生,性质相同,这些常常是我们讲授这个定律要强调的内容。而且,在一定范围内,牛顿第三定律与物体系的动量守恒是密切相联系的。 但是随着人们对物体间的相互作用的认识的发展,19世纪发现了电与磁之间的联系,建立了电场、磁场的概念;除了静止电荷之间有沿着连线方向相互作用的库仑力外,发现运动电荷还要受到磁场力即洛伦兹力的作用;运动电荷又将激发磁场,因此两个运动电荷之间存在相互作用。在对电磁现象研究的基础上,麦克斯韦(1831-1879)在1855~1873年间完成了对电磁现象及其规律的大综合、建立了系统的电磁理论,发现电磁作用是通过电磁场以有限的速度(光速c)来传递的,后来为电磁波的发现所证实。 物理学的深入发展,暴露出牛顿第三定律并不是对一切相互作用都是适用的。如果说静止电荷之间的库仑相互作用是沿着二电荷的连线方向,静电作用可当作以“无穷大速度”传递的超距作用,因而牛顿第三定律仍适用的话,那么,对于运动电荷之间的相互作用,牛顿第三定律就不适用了。如图所示,运动电荷B通过激发的磁场作用于运动电荷A的力为 (并不沿AB的连线),而运动电荷A的磁场在此刻对B电荷却无作用力(图中未表示它们之间的库仑力)。由此可见,作用力在此刻不存在反作用力,作用与反作用定律在这里失效了。 实验证明:对于以电磁场为媒介传递的近距作用,总存在着时间的推迟。对于存在推迟效应的相互作用,牛顿第三定律显然是不适用的。实际上,只有对于沿着二物连线方向的作用(称为有心力),并可以不计这种作用传递时间(即可看做直接的超距作用)的场合中,牛顿第三定律才有效。 但是在牛顿力学体系中,与第三定律密切相关的动量守恒定律,却是一个普遍的自然规律。在有电磁相互作用参与的情况下,动量的概念应从实物的动量扩大到包含场的动量;从实物粒子的机械动量守恒扩大为全部粒子和场的总动量守恒,从而使动量守恒定律成为普适的守恒定律。[牛顿运动定律创立的伟大意义] 牛顿的三大运动定律构成了物理学和工程学的基础。正如欧几里德的基本定理为现代几何学奠定了基础一样,牛顿三大运动定律为物理科学的建立提供了基本定理。三大定律的推出、地球引力的发现和微积分的创立使得牛顿成为过去过去一千年中最杰出的科学巨人。[牛顿运动定律的创立过程] 约翰尼斯·开普勒在1609年发现行星沿椭圆形(而不是圆形)轨道围绕太阳运行。此后,科学家们便纷纷狂热地试图用数学方法解释这些轨道。罗伯特·胡克和约翰·哈雷都曾做过尝试,但他们两个人用的数学方法都没能奏效。 1642年艾萨克·牛顿出生于英国距离剑桥60英里的林肯郡。艾萨克是个难对付的孩子。在他出生前三个月父亲就去世了,他不喜欢继父,于是被送给外祖父母由他们抚养长大。然而牛顿不喜欢任何人——他不喜欢母亲,也不喜欢外祖父母,甚至连同母异父的弟弟和妹妹也不喜欢。他经常威胁说要打这些亲人,要把房子烧掉。在学校里,他经常违反纪律,让老师头疼。 只有一个人——威廉·艾斯库注意到牛顿的聪慧和潜能,他安排牛顿去三一学院(隶属于剑桥大学)学习。因为太穷支付不起昂贵的学费,牛顿就给其他学生当佣人来挣钱支付食宿的费用。他总是独来独往,神神秘秘,别人都说他经常板着面孔,喜欢与人争论。 1665年伦敦瘟疫爆发,剑桥大学被迫关闭,于是牛顿回到妹妹在乡下的庄园。庄园很闭塞,同时又缺少必要的数学工具描述不断变化的力量和运动——而这些又是他感兴趣的,因此他觉得十分沮丧。他决心弄清楚使物体运动(或静止)的力量。 除了阅读当时比较新的开普勒和哈雷的专著之外,牛顿还研读了伽利略和亚里士多德的著作。他搜集了早期希腊学者以来的研究结果和理论,这些理论都很零散,而且经常相互矛盾。他仔细筛选这些材料并把它们重新提炼,找出其中的普遍真理和谬误。牛顿非常善于从大量观点中筛选出包含真理的少数,他的这一才能让人称奇。 牛顿算不上是实验者,他喜欢思考问题,像爱因斯坦那样在脑海里做实验。他会长时间专注地想事情,直到得出他需要的答案。用他自己的话说,他会“把问题摆在面前,然后开始等待,一直等到出现第一缕曙光,接着渐渐变得清晰,最后豁然开朗”。 不久,一个问题开始困扰着牛顿:是什么力量导致了运动呢?他集中精力研究伽利略的自由落体定律和开普勒的行星运动规律。他痴迷到了废寝忘食的地步,身体几乎处于崩溃的边缘。 1666年初,牛顿创立了三大运动定律,这些定律为他发明微积分和发现地球引力创造了必不可少的条件。但直到20年后哈雷鼓励牛顿写《自然哲学的数学原理》时,牛顿才公布了他创立的三大定律。 1684年,让·皮卡尔第一次精确地求出了地球的大小和质量。有了这些必要的数字,牛顿就能证明:利用三大运动定律和他的重力方程式可以正确地计算出行星运动的真实轨道。即使有了确凿的数学证据,牛顿也只是在哈雷的请求和说服下于1687年发表了《自然哲学和数学原理》,发表这本书最主要的原因是罗伯特·胡克声称(错误地声称),他自己已经发现了运动的普遍规律。《自然哲学和数学原理》成为科学史上备受推崇和人们经常使用的出版物。参考资料:牛顿第一定律:物体在不受到力的作用的时候始终保持匀速运动状态或静止静止状态 直到有外力迫使它改变运动状态为止(牛顿第一定律也叫惯性定律)牛顿第二定律:a=F合/m 一个物体的加速度与合外力成正比 与它的质量成反比牛顿第三定律:作用力与反作用力 力的作用是相互的

英国物理学家牛顿曾经研究过这样一个问题:从高山上用不同的水平速度抛出物体,抛出速度越大,落地点就离

不食五谷
夫畏涂者
(1)牛顿站在高山上平抛石头的实验是在实验的基础上进行科学的推理,速度大,落地越远,速度足够大,物体将不落地,永远绕地球圆周运动.根据牛顿的科学推理,人类研制人造地球卫星或宇宙飞船,都已被送上太空.伽利略等人利用相似推理方法对力和运动的关系进行了研究,牛顿在此基础上总结出了著名的牛顿第一定律.故答案为:当速度足够大时,物体就永远不会落到地面上,它将绕地球旋转;人造地球卫星或宇宙飞船;牛顿第一.

仔细阅读材料,回答后面的问题: “牛顿大炮”的故事 牛顿曾研究过这样一个问题..

本井
明见无值
(1)掷出去的石头会偏离掷出方向落回地面(2)当射出速度足够大时,炮弹将会环绕地球运动;人造地球卫星

大数学家高斯在上学读书时曾经研究过这样一个问题1+2+3+…+10=?经过研究,这个问

惊天雷
梅拉妮
高斯 亚里士多德 陈景润 华罗庚 陈省身 欧拉 欧几里德 希尔伯特 丘成桐 牛顿 毕达哥拉斯 费马 冯·诺依曼 笛卡儿 爱因斯坦 ... 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称“智慧之都”的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 后来阿基米德成为兼数学家与力学家的伟大学者,并且享有“力学之父”的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的“阿基米德原理”,他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。 《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。 《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。 《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的。在这部著作中,他还提出了著名的“阿基米德公理”。 《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:“任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。”他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。 《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。 《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。 《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。 《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。 丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。 正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。 高斯(1777~1855) 高斯是德国数学家、物理学家和天文学家,英国皇家学会会员。 高斯是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误;10岁便独立发现了算术级数的求和公式;11岁发现了二项式定理。少年高斯的聪颖早慧,得到了很有名望的布瑞克公爵的垂青与资助,使他得以不断深造。19岁的高斯在进大学不久,就发明了只用圆规和直尺作出正17边形的方法,解决了两千年来悬而未决的几何难题。1801年,他发表的<<算术研究>>,阐述了数论和高等代数的某些问题。他对超几何级数、复变函数、统计数学、椭圆函数论都有重大贡献。作为一个物理学家,他与威廉.韦伯合作研究电磁学,并发明了电极。为了进行实验,高斯还发明了双线磁力计,这是他对电磁学问题研究的一个很有实际意义的成果。高斯30岁时担任了德国著名高等学府天文台台长,并一直在天文台工作到逝世。他平生还喜欢文学和语言学,懂得十几门外语。他一生共发表323篇(种)著作,提出了404项科学创见,完成了4项重要发明。 高斯去世后,人们在他出生的城市竖起了他的雕像。为了纪念他发现做出17边形的方法,雕像的底座修成17边形。世人公认他是一位和牛顿、阿基米德、欧拉齐名的数学家。 八岁的高斯发现了数学定理 德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。 “你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。 教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。” 数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。 欧拉欧拉(1707~1783) 欧拉瑞士数学家,英国皇家学会会员。 欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。但是,这并没有影响他的工作 。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等 领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。 欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。 小欧拉智改羊圈 欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。 事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。" 欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢? 他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。 在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。 回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。 爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。 小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。 父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。 小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。" 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。 父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。 华罗庚报效祖国宏愿------ 华罗庚的故事 同学们都知道,华罗庚是一位靠自学成才的世界一流的数学家。他仅有初中文凭,因一篇论文在《科学》杂志上发表,得到数学家熊庆来的赏识,从此华罗庚北上清华园,开始了他的数学生涯。 1936年,经熊庆来教授推荐,华罗庚前往英国,留学剑桥。20世纪声名显赫的数学家哈代,早就听说华罗庚很有才气,他说:“你可以在两年之内获得博士学位。”可是华罗庚却说:“我不想获得博士学位,我只要求做一个访问者。”“我来剑桥是求学问的,不是为了学位。”两年中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。 1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。 新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:“朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……”虽然数学没有国界,但数学家却有自己的祖国。 华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。 据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。 从初中毕业到人民数学家,华罗庚走过了一条曲折而辉煌的人生道路,为祖国争得了极大的荣誉。 阿基米德(约公元前287~212年) ——希腊物理学家、数学家。 阿基米德的父亲是一位天文学家和数学家,他从小受到良好的教育,特别喜爱数学。有一次,国王请他去测定金匠刚刚为其做好的王冠是纯金的还是掺有银子的混合物,并且告诫他不得毁坏王冠。起初,阿基米德茫然不知所措。直到有一天,当自己泡大一满盆洗 澡水里时,溢出水量的体积等于他身体浸入水中的那部分体积。那么,如果把王冠浸入水中 ,根据水面上升的情况算出王冠的体积与等重量金子的体积相等,就说明王冠是纯金的;假如掺有银子的话,王冠的体积就会大一些。他兴奋地从浴盆中跃出,全身赤条条地奔向皇宫,大喊着:"我找到了!找到了!"他为此而发明了 浮力原理。除此之外,他还发现了著名的杠杆原理。伴随着这一发明,还产生了一句众所周知的名言:"只要给我一个支点,我就能撬动地球。" 在阿基米德的老年岁月里,他的祖国与罗马发生战争,当他住的城市遭劫掠时,阿基米德还专心地研究他在沙地上画的几何图形,凶残的罗马士兵刺倒了这位75岁的老人,伟大的科学家扑倒在鲜血染红了的几何图形上…… 阿基米德死后,人们整理出版了《阿基米德遗著全集》,以永远缅怀这位科学巨匠的伟大业绩。 牛顿(1642~1727) 牛顿英国物理学家、数学家。曾任英国皇家学会会长。 牛顿是举世公认的、有史以来最伟大的科学家之一。他的幼年充满了辛酸,在他出生前3个月父亲便去世了,之后母亲改嫁,他是由外祖母抚养成人的。23毕业于著名的剑桥大学后留校工作。后因逃避伦敦流行的鼠疫来到母亲的农场里。在这里,他被一个常人熟视无睹的现象吸引住了。有一次,他看到一个熟透了的苹果落在地上,便开始思索为什么苹果会垂直落在地上,而不是飞到天上去呢?一定是有一种力在拉它,那么这种将苹果往下拉的力会不会控制月球?他就是通过这个看起来十分简单的现象,发现了著名的万有引力定律。这个定律的巨大作用,很快就显示了出来。它解释了当时所知道的天体的一切运动。同时,牛顿又完成了一项重要的光学实验,从而证明了白光是由以赤、橙、黄、绿、青、蓝、紫的顺序排列的合成光。1687年,牛顿出版了有史以来最伟大的科学著作《自然哲学的数学原理》。在这里,他钻研了伽利略的理论,并归纳出著名的运动三大定律。除此之外,他发现的二项式定理,在数学界也有一席之地。1704年,出版《光学》一书,总结了他对光学研究的成果。 牛顿61岁那年被选为英国皇家学会会长,此后年年连任直至逝世。作为举世公认的、最卓越的科学巨匠,他仍谦逊地说:“如果说我比别人看得远些,那是因为我站在了巨人的肩上。”1727年3月20日,84岁的牛顿逝世了。作为有功于国家的伟人,他被葬在了英国国家公墓,受到世人的瞻仰。 祖冲之(429~500) 中国南北朝时代南朝数学家、天文学家、物理学家。范阳遒(今河北涞水)人 祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。 宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。 我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。 公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。 祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。 尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。 祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。松下问童子,yjrnvi7155Dim a, b, c, d As Integera = Val(Text1.Text)b = Val(Text2.Text)c = 0d = aDo While d <= bc = c + dd = d + 1LoopMsgBox "值为" & c #include<stdio.h>int main(){ int i,sum=0; for(i=1;i<=100;i++) sum+=i; printf("Sum = %d\n",sum);} 程序运行结果:4950

提个问题急需高手

浮之江湖
狸御殿
学什么都要一个精,只要你学一门技术,只要精,都可以的。三百六十行,行行出状元!现在还小,高中毕业,就该学什么东东都不难的。学些画图呀,就是模具设计绘图呀。做模具呀,模具设计师现在还是比较可以的。调色呀……等学一些实际的,也就是技术方面的都比较好。

给一点天文地理的难题目

徐爱
上决浮云
太阳系如何形成的?月亮会成为行星吗?太阳的归宿是什么样的?成为黑洞?中子星?白矮星?超新星是如何爆炸的?真的有虫洞吗?宇宙的第五维是什么?宇宙的归宿又是什么?为什么人类400万年到200万的化石几乎没有?北纬30度的很地方为什么那么诡秘?地球的下个冰河期什么时候到来?1亿年后地球什么样子?那时板块的挤压漂移给地球又带来了什么?老鼠能取代人类成为地球的霸主吗?第一:为什么会出现宇宙. 第二:为什么会有人类. 第三:宇宙爆炸之前是氢气组成的第一颗恒星.里面都是氢气,爆炸之后怎么会出现行星和恒星?爆炸之后,为什么会出现恒星,行星,还有尘土? 第三:为什么宇宙中的恒星和行星还有一些尘土怎么会组成现在的宇宙? 我上一个人问地球这么多水是从哪里来的? 这题我都知道答案.你为什么要天文地理最难的题目?