欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2007年考研数学一真题及答案

麻疯女
热带鱼
去百度文库,查看完整内容>内容来自用户:100104262007年考研数学一真题一、选择题(110小题,每小题4分,共40分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。)(1)当时,与等价的无穷小量是(A)(B)(C)(D)【答案】B。【解析】时几个不同阶的无穷小量的代数和,其阶数由其中阶数最低的项来决定。综上所述,本题正确答案是B。【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)曲线渐近线的条数为(A)0 (B)1(C)2 (D)3【答案】D。【解析】由于,则是曲线的垂直渐近线;又所以是曲线的水平渐近线;斜渐近线:由于一侧有水平渐近线,则斜渐近线只可能出现在一侧。则曲线有斜渐近线,故该曲线有三条渐近线。综上所述,本题正确答案是D。【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是(A)(B)(C)(D)【答案】C。【解析】【方法一】四个选项中出现的在四个点上的函数值可根据定积分的几何意义确定则【方法二】由定积分几何意义知,排除(B)又由的图形可知((A)(12)【解析】得

2007年考研数学数学二真题及答案解析

柳树溪
北漂梦
去百度文库,查看完整内容>内容来自用户:真题铺2007年硕士研究生入学考试数学二试题及答案解析一、选择题:(本题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)当时,与等价的无穷小量是(A). (B). (C). (D). [B]【分析】利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.【详解】当时,有;;利用排除法知应选(B).(2)函数在上的第一类间断点是x=(A) 0. (B) 1. (C). (D). [ A ]【分析】本题f(x)为初等函数,找出其无定义点即为间断点,再根据左右极限判断其类型。【详解】f(x)在上的无定义点,即间断点为x=0,1,又,,可见x=0为第一类间断点,因此应选(A).(3)如图,连续函数y=f(x)在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[−2,0],[0,2]的图形分别是直径为2的上、下半圆周,设则下列结论正确的是(A). (B).(C). (D). [C]【分析】本题考查定积分的几何意义,应注意f(x)在不同区间段上的符号,从而搞清楚相应积分与面积的关系。【详解】根据定积分的几何意义,知F(2)为半径是1的半圆面积:,F(3)是两个半圆面积之差:=,因此应选(C).(4)设函数f(x【根据可微的定义,知函数(17)【

2008年考研数学一真题及答案详解

夜叉
在路上
去百度文库,查看完整内容>内容来自用户:速麦2008年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数f(x)(A)0(C)2(2)函数f(x,y)arctan(A)i(C)jx20ln(2t)dt则f(x)的零点个数(B)1(D)3x在点(0,1)处的梯度等于y(B)-i(D)j(3)在下列微分方程中,以yC1exC2cos2xC3sin2x(C1,C2,C3为任意常数)为通解的是(A)yy4y4y0(C)yy4y4y0(B)yy4y4y0(D)yy4y4y0(4)设函数f(x)在(,)内单调有界,xn为数列,下列命题正确的是(A)若xn收敛,则f(xn)收敛(C)若f(xn)收敛,则xn收敛(B)若xn单调,则f(xn)收敛(D)若f(xn)单调,则xn收敛3(5)设A为n阶非零矩阵,E为n阶单位矩阵.若A0,则(A)EA不可逆,EA不可逆(C)EA可逆,EA可逆(6)设A为3阶实对称矩阵,如果二次曲面方程(B)EA不可逆,EA可逆(D)EA可逆,EA不可逆x(x,y,z)Ay1在正交变换下的标准方程的图形z如图,则A的正特征值个数

2008年考研数学一真题及答案详解

贝索罗
大馆奴
去百度文库,查看完整内容>内容来自用户:速麦2008年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数f(x)(A)0(C)2(2)函数f(x,y)arctan(A)i(C)jx20ln(2t)dt则f(x)的零点个数(B)1(D)3x在点(0,1)处的梯度等于y(B)-i(D)j(3)在下列微分方程中,以yC1exC2cos2xC3sin2x(C1,C2,C3为任意常数)为通解的是(A)yy4y4y0(C)yy4y4y0(B)yy4y4y0(D)yy4y4y0(4)设函数f(x)在(,)内单调有界,xn为数列,下列命题正确的是(A)若xn收敛,则f(xn)收敛(C)若f(xn)收敛,则xn收敛(B)若xn单调,则f(xn)收敛(D)若f(xn)单调,则xn收敛3(5)设A为n阶非零矩阵,E为n阶单位矩阵.若A0,则(A)EA不可逆,EA不可逆(C)EA可逆,EA可逆(6)设A为3阶实对称矩阵,如果二次曲面方程(B)EA不可逆,EA可逆(D)EA可逆,EA不可逆x(x,y,z)Ay1在正交变换下的标准方程的图形z如图,则A的正特征值个数

2008年考研数学一真题及答案

面目有光
拉巴特
去百度文库,查看完整内容>内容来自用户:100104262008年考研数学一真题一、选择题(18小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。)(1)设函数,则的零点个数为(A)0 (B)1(C)2 (D)3【答案】B。【解析】且,则是唯一的零点综上所述,本题正确答案是B。【考点】高等数学—一元函数积分学—积分上限的函数及其导数(2)函数在点处的梯度等于(A)(B)(C)(D)【答案】A。【解析】所以综上所述,本题正确答案是A。【考点】高等数学—多元函数微分学—方向导数和梯度(3)在下列微分方程中,以为通解的是(A)(B)(C)(D)【答案】D。【解析】由通解表达式可知其特征根为可见其对应特征方程为故对应微分方程为综上所述,本题正确答案是D。【考点】高等数学—常微分方程—高于二阶的某些常系数齐次线性微分方程(4)设函数在内单调有界,为数列,下列命题正确的是(A)若收敛,则收敛(B)若单调,则收敛(C)若收敛,则收敛(D)若单调,则收敛【答案】B。【解析】【方法一】由于单调,单调有界,则数列单调有界,根据单调有界准则知数列收敛。【方法二】排除法:若取,,则显然单调,收敛,但,显然不收敛,排除A。若取(12)(17)

2002年考研数学一真题及答案详解

变形记
阿肖克
去百度文库,查看完整内容>内容来自用户:速麦2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)edx=_____________.xln2x(2)已知ey6xyx210,则y(0)=_____________.(3)yyy20满足初始条件y(0)1,y(0)1的特解是_____________.2222(4)已知实二次型f(x1,x2,x3)a(x1x2x3)4x1x24x1x34x2x3经正交变换2可化为标准型f6y1,则a=_____________.(5)设随机变量X~N(,2),且二次方程y24yX0无实根的概率为0.5,则=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的一阶偏导数连续,③f(x,y)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的一阶偏导数存在.则有:(A)②③①(C)③④①(B)③②①(D)③①④(2)设un0,且lim(A)发散(C)条件收敛1nn11)为1,则级数(1)(nuunun1n(B)绝对收敛(D)收敛性不能判定.(3)设函数f(x)在R上有界且可导,则(A)当l

谁有考研数一真题,2010和2011年的包括答案。

能不胜任
独心
亲 给你哈

2019年考研数学一真题附答案解析

黄衣
天其运乎
去百度文库,查看完整内容>内容来自用户:GG135795959862019年考研数学一真题解析一、选择题1—8小题.每小题4分,共32分.1.当时,若与是同阶无穷小,则()(A)(B)(C)(D)【答案】(C)【详解】当时,,所以,所以.2.设函数,则是的()(A)可导点,极值点(B)不可导的点,极值点(C)可导点,非极值点(D)不可导点,非极值点【答案】(B)【详解】(1),所以函数在处连续;(2),所以函数在处不可导;(3)当时,,函数单调递增;当时,,函数单调减少,所以函数在取得极大值.3.设是单调增加的有界数列,则下列级数中收敛的是()(A)(B)(C)(D)【答案】(D)【详解】设是单调增加的有界数列,由单调有界定理知存在,记为;又设,满足,则,且,则对于正项对于级数,前项和:也就是收敛.4.设函数,如果对于上半平面内任意有向光滑封闭曲线都有那么函数可取为()(A)(B)(C)(D)【答案】(D)【详解】显然,由积分与路径无关条件知,也就是,其中是在上处处可导的函数.只有(D)满足.5.设是三阶实对称矩阵,是三阶单位矩阵,若,且,则二次型的规范形是()(A)(B)(C)(D)【答案】(C)【详解】假设是矩阵的特征值,由条件可得,也就是矩阵(设函数分别求解线性方程组

2001年考研数学一试题答案与解析

固不爱己
坏爸爸
去百度文库,查看完整内容>内容来自用户:zglajtb2001年考研数学一试题答案与解析一、(1)【分析】由通解的形式可知特征方程的两个根是,从而得知特征方程为.由此,所求微分方程为.(2)【分析】gradr=.再求divgradr==.于是divgradr|=.(3)【分析】这个二次积分不是二重积分的累次积分,因为时.由此看出二次积分是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为.由累次积分的内外层积分限可确定积分区域:.见图.现可交换积分次序原式=.(4)【分析】矩阵的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为,故,即.按定义知.(5)【分析】根据切比雪夫不等式,于是.二、(1)【分析】当时,单调增,(A),(C)不对;当时,:增——减——增:正——负——正,(B)不对,(D)对.应选(D).(2)关于(A),涉及可微与可偏导的关系.由在(0,0)存在两个偏导数在(0,0)处可微.因此(A)不一定成立.关于(B)只能假设在(0,0)存在偏导数,不保证曲面在存在切平面.若存在时,法向量n={3,1,-1}与{3,1,1}不共线,因而(B)不成立.关于(C),该曲线的参数方程为它在点处的切向量为.因此,(C)成立.(3)【分析】当时,.关于(A):,由此可知.若在可导(A)成立,反之若(A)成立.如满足(A),但不.关于(D):若在可导,.(D)成立.反之(D)成立在连续,在可导.如满足(D),但在处不连续(