欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2006年考研数学一真题及答案

是狸德也
匠石之齐
去百度文库,查看完整内容>内容来自用户:100104262006年考研数学一真题一、填空题(1~6小题,每小题4分,共24分。)(1)。【答案】2。【解析】等价无穷小代换:当时,所以综上所述,本题正确答案是2。【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)微分方程的通解为__________。【答案】,为任意常数。【解析】原式等价于(两边积分)即,为任意常数综上所述,本题正确答案是。【考点】高等数学—常微分方程—一阶线性微分方程(3)设是锥面的下侧,则。【答案】。【解析】设,取上侧,则而0所以综上所述,本题正确答案是。【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(4)点(2,1,0)到平面的距离。【答案】。【解析】点到平面的距离公式:其中为点的坐标,为平面方程所以综上所述,本题正确答案是。【考点】高等数学—向量代数和空间解析几何—点到平面和点到直线的距离(5)设矩阵,为二阶单位矩阵,矩阵满足,则___________。【答案】2。【解析】因为,所以。综上所述,本题正确答案是。【考点】线性代数—行列式—行列式的概念和基本性质线性代数—矩阵—矩阵的线性运算(6)设随机变量【考点】线性代数(18)当

考研数学三 06年真题

女人香
无情无义
;数学三的考试科目为:微积分、线性代数、概率论与数理统计,其中微积分占总分的56%,线性代数占22%,概率论与数理统计占22%。协方差不考吧

考研英语06年真题四篇阅读错了13个!情何以堪!!是不是06年的比较难啊

臭恶
溱洧
我错了12个,我也觉得06年的格外难

各位大神,谁有2006年到2012年中科院高等代数的考研真题,麻烦给小弟发一份,感激不尽,

艾德蒙
魔童村
已经上传到附件,不过缺少了09和08的真题你可以通过其他方式找找,比如去那个什么宝上面买两年的也行祝你成功!如果满意请采纳!谢谢追答望采纳!

2006年(数学三)考研大纲

冤有头
生非汝有
2006年数学三考研大纲(完整版)2006年数学三考研大纲一、微积分一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数基本初等函数的性质及图形初等函数 数列极限与函数极限的概念 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较极限 四则运算 两个重要极限 函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法。深入了解函数的有界性、单调性、周期性和奇偶性。 3.理解复合函数、反函数、隐函数和分段函数的概念。 4。掌握基本初等函数的性质及其图形,理解初等函数的概念。 5.会建立简单应用问题中的函数关系式。 6.了解数列极限和函数极限(包括左、右极限)的概念。 7.了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法。了解无穷大的概念及其与无穷小的关系。 8.了解极限的性质与极限存在的两个准则(单调有界数列有极限、夹*定理),掌握极限四则运算法则,会应用两个重要极限。 9.理解函数连续性的概念(含左连续与右连续)。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用。二、一元函数微分学考试内容导数的概念 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'HoSpital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求1。理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法以及对数求导法。 3.了解高阶导数的概念,会求二阶、三阶导数及较简单函数的N阶导数。 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性:掌握微分法。 5.理解罗尔(ROl1e)定理、拉格朗日(kgrange)中值定理、柯西(oluchy)中值定理的条件和结论,掌握这三个定理的简单应用。 6.会用洛必达法则求极限。 7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题)。8.掌握曲线凹凸性和拐点的判别方法,以及曲线的渐近线的求法。 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形三、一元函数积分学考试内容原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元 积分法和分部积分法 定积分的概念和基本性质 积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton一Leibniz)公式 定积分的换元 积分法和分部积分法广义积分的概念和计算定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握计算不定积分的换元积分法和分部积分法。 2.了解定积分的概念和基本性质。掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法。会求变上限定积分的导数。 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用题。 4.了解广义积分收敛与发散的概念,掌握计算广义积分的基本方法,了解广义积分的收敛与发散的条件。四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质(最大值和最小值定理)偏导数的概念与计算多元复合函数的求导法 隐函数求导法 高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算考试要求1.了解多元函数的概念,了解二元函数的表示法与几何意义 2.了解二元函数的极限与连续的直观意义。 3.了解多元函数偏导数与全微分的概念,掌握求复合函数偏导数和全微分的方法,会用隐函数的求导法则。 4.了解多元函数极值和条件极值的概念/掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值。会用拉格朗日乘数法求条件极值。会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。会计算无界区域上的较简单的二重积分。五、无穷级数考试内容常数项级数收敛与发散的概念 收敛级数的和的概念级数的基本性质与收敛的必要条件 几何级数与户级数的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数莱布尼茨定理幂级数的概念 收敛半径、收敛区问(指开区间)和收敛域幂级数的和函数幂级数在收敛区间内的基本性质简单幂级数的和函数的求法 初等函数的幂级数展开式考试要求1.了解级数的收敛与发散、收敛级数的和等概念。 2.掌握级数收敛的必要条件及收敛级数的基本性质。掌握几何级数及P 级数的收敛与发散的条件。掌握正项级数的比较判别法和达朗贝尔(比值)判别法。 3.了解任意项级数绝对收敛与条件收敛的概念,掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛的判别方法。 4.会求幂级数的收敛半径和收敛域。 5.了解幂级数在收敛区问内的基本性质(和函数的连续性、逐项微分和逐项积分),会求一些简单幂级数的和函数。 6·掌握(略)等幂级数展开式,并会利用这些展开式将一些简单函数间接展成幂级数。六、常微分方程与羡分方程考试内容微分方程的概念 微分方程的解、通解、初始条件和特解变量 可分离的微分方程 齐次方程一阶线性方程 二阶常系数齐次线性方程及简单的非齐次线性方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用考试要求1.了解微分方程的阶、通解、初始条件和特解等概念。 2.掌握变量可分离的方程、齐次方程和一阶线性方程的求解方法。 3.会解二阶常系数齐次线性方程和自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程。 4.了解差分与差分方程及其通解与特解等概念。 5.掌握一阶常系数线性差分方程的求解方法。 6.会应用微分方程和差分方程求解一些简单的经济应用问题。二、线往代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理克莱姆(Crammer)法则考试要求1.理解门阶行列式的概念。 2.掌握行列式的性质,会应用行列式的性质和行列式按行(列)展开定理计算行列式。 3.会用克莱姆法则解线性方程组。二、矩阵考试内容矩阵的概念 单位矩阵、对角矩阵、数量矩阵、三角矩阵、对称矩阵和正交矩阵矩阵的和数与矩阵的积 矩阵与矩阵的积 矩阵的转置 逆矩阵的概念和性质 矩阵的伴随矩阵 矩阵的初等变换 初等矩阵 分块矩阵及其运算矩阵的秩考试要求1.理解矩阵的概念,了解几种特殊矩阵的定义和性质。 2.掌握矩阵的加法、数乘、乘法,以及它们的运算法则;掌握矩阵转置的性质;掌握方阵乘积的行列式的性质。 3.理解逆矩阵的概念、掌握逆矩阵的性质。会用伴随矩阵求矩阵的逆。 4.了解矩阵的初等变换和初等矩阵的概念;理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩。 5.了解分块矩阵的概念,掌握分块矩阵的运算法则。三、向量考试内容向量的概念 向量的和数与向量的积 向量的线性组合与线性表示 向量组线性相关与线性元关的概念、性质和判别法 向量组的极大线性元关组 向量组的秩考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则。 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。 3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法。 4.理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩。四、线性方程组考试内容线性方程组的解 线性方程组有解和元解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线住方程组的通解考试要求1.理解线性方程组解的概念,掌握线性方程组有解和无解的判定方法。 2.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。 3.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解。五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念 相似矩阵 矩阵的相似 对角矩阵 实对称矩阵的特征值和特征向量考试要求1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。 2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法。 3.掌握实对称矩阵的特征值和特征向量的性质。六、二次型考试内容二次型及其矩阵表示 合同矩阵二次型的秩 惯性定理 二次型的标准形和规范形 正交变换二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型。 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念(了解惯性定理的条件和结论,会甩正交变换和配方法化二次型为标准形。正定二次型、正定矩阵的概念,掌握正定矩阵的性质。三、概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系 事件的运算及性质 事件的独立性完全事件组概率的定义概率的基本性质古典型概率条件概率““法公式乘法公式全概率公式和贝叶斯(Bayes)公式独立重复试验考试要求1.了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算。 2,理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率;掌握概率的加法、乘法公式以及全概率公式、贝叶斯公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。二、随机变量及其概率分布考试内容随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 二维随机变量及其联合(概率)分布 二维离散型随机变量的联合概率分布和边缘分布 二维连续型随机变量的联合概率密度和边缘密度随机变量的独立性 常见二维随机变量的联合分布 随机变量函数的概率分布 两个连续型随机变量之和的概率分布 χ2分布 t分布 F分布 分位数的概念考试要求1.理解随机变量及其概率分布的概念;理解分布函数F(x)=P{X≤x}的概念及性质;会计算与随机变量有关的事件的概率。 2.理解离散型随机变量及其概率分布的概念,掌握0一1分布、二项分布、超JLnn分布、泊松(POison)分布及其应用。 3.理解连续型随机变量及其概率密度的概念,掌握概率密度与分布函数之间的关系;掌握均匀分布、指数分布正态分布及其应用 4.理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及其两种基本形式:离散型联合概率分布和边缘分布、连续型联合概率密度和边缘密度;会利用二维概率分布求有关事件的概率。 5.理解随机变量的独立性及不相关性的概念,掌握离散型和连续型随机变量独立的条件。 6.掌握二维均匀分布;了解二维正态分布的密度函数,理解其中参数的概率意义。 7.掌握根据自变量的概率分布求其较简单函数的概率分布的基本方法;会求两个随机变量之和的概率分布;了解产生χ2变量、,变量和F变量的典型模式;理解标准正态分布:χ2 分布、T分布和F分布的分位数,会查相应的数值表。三、随机变量的数字特征考试内容随机变量的数学期望、方差、标准差以及它们的基本性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 两个随机变量的协方差及其性质 两个随机变量的相关系数及其性质考试要求1.理解随机变量数字特征(期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计算具体分布的数字特征,掌握常用分布的数字特征。 2.会根据随机变量1的概率分布求其函数的数学期望Eg(X);会根据随机变量调和Y的联合概率分布求其函数g(x,Y)的数学期望Eg(x,y)。 3.掌握切比雪夫不等式。四、大数定律和中心极限定理考试内容切比雪夫(Chebyhev)大数定律伯努利(Bemoulli)大数定律辛钦(Khinchine)大数定律泊松(Pojhon)定理 列莫弗一拉普拉斯定理(二项分布以正态分布为极限分布)列维一林德伯格定理(独立同分布的中心极限定理)考试要求1.了解切比雪夫、伯努利、辛钦大数定律成立的条件及结论,理解其直观意义。 2.掌握泊松定理的结论和应用条件,并会用泊松分布近似计算二项分布的概率。 3.掌握椽莫弗一拉普拉斯中心极限定理、列维一林德怕格中心极限定理的结论和应用条件,并会用相关定理近似计算有关随机事件的概率。五、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值、样本方方差 样本矩考试要求理解总体、简单随机样本、统计量、样本均值与样本方差的概念;了解经验分布函数;掌握正态总体的抽样分布(标准正态分布、χ2分布、F分布、T分布六、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 极大似然估计 估计量的评选 标准区间估计的概念 单个正态总体均值的区间估计 单个正态总体方查和标准差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1. 理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、最小方差性(有效性)和相合性(一致性)的概念,并会验正估计量的无偏性。 2.掌握矩估计法和极大似然估计法 3. 掌握单个正态总体的均值和方差的置信区间的求法 4. 掌握两个正态总体的均值差和方差比置信区见的求法七、假设检验考试内容显著性检验的基本思想、基本步骤和可能产生的两类错误 单个和两个正态总体的均值差和方差的假设检验考试要求1。理解显著兴建研的基本思想,掌握假设检验的基本步骤了解假设检验可能产生的两类错误 2.了解单个和两个正态总体的均值和方差的假设检验。试卷结构(一)内容比例微积分约50%线性代数约25%概率论与数理统计约25%(二)题型比例填空题与选择题约30%解答题(包括证明题)约70%参考资料:http://www.enboe.com/club/dispbbs.asp?BoardID=3&replyID=50160&id=50160&skin=1建议就看数学的吧英语,政治等07年的 别急数学最关键到www.kaoyan.com 的论坛上去看看 会有的 加油把

考研数学06年第九题 非齐次线性方程组

执行者
性命
我来帮你回答吧。1.“有”表明该非齐次线性方程组至少存在3个线性无关的解,就是线性无关的解的个数大于等于三个;“恰有”表明该非齐次线性方程组线性无关的解有且只有3个。2.由于α1,α2,α3是非齐次线性方程组的线性无关的三个解,易验证α1-α2,α1-α3均为对应齐次线性方程组的线行无关的两个解,因为A(α1-α2)=Aα1-Aα2=β-β=0,α1-α3同理可得。之所以线性无关,因为不存在不全为零的常数k1,k2使得k1(α1-α2)+k2(α1-α3)=0(否则α1,α2,α3就线性相关了),那么根据齐次线性方程组线行无关解的个数与系数矩阵秩的关系,有线行无关解的个数=n-r(A)=4-r(A),因为题目中是“有”字,即存在的意思,那么非齐次线性方程组Ax=β可能有多于3个的线性无关的解,那么对于对应的齐次线性方程组Ax=0就有可能可以仿照题中的方法构造出多于2个的线性无关的解。意即4-r(A)≥2.得r(A)≤2.矩阵A中有二阶子式不为零,你可以参照课本上关于矩阵秩的定义,即r(A)就是A的非零子式的最高阶数,但注意这里又是“有”,即存在二阶子式不为零,那么有可能存在二阶以上的子式不为零,那么r(A)=A的非零子式的最高阶数≥2.希望我的回答可以对你有帮助。谢谢你的回答。还有个问题,α1-α2,α1-α3是线性无关的,还有α2-α3同样也线性无关,那么是否可以认为 线行无关解的个数=n-r(A)=4-r(A) >= 3 从而r(A) <=1 那不就直接得到答案 1 了嘛。为什么做题时“易验证α1-α2,α1-α3均为对应齐次线性方程组的线行无关的两个解” , 这一步中只找两个,上面我说的得到答案 1 有什么问题验证是否线性无关首先用定义,你看(α1-α2)+(α2-α3)-(α1-α3)=0,那么就是存在着不为零的常数使得k1(α1-α2)+k2(α2-α3)+k3(α1-α3)=0,也就是α1-α2,α2-α3,α1-α3三者是线性相关的,当然不能就此认为线性无关的解的个数大于等于3个了,所以不能得到答案是1.

求05年到15年的历年的数学一平均分(考研)

飞呀飞
过桥
 2015年考研数学平均分  小编踏遍百度和各大资料,都没有找到官方数据,在这里就给不出相关确切数据。不过小编可以确认的是,2015年数学难度较以往几年都较低,因而平均分会有一定程度的上升。  2014年考研数学平均分  数一:67  数二:71  数三:69  2014年考研数学难度较大,这在平均分中就可以看出。小题较难,大题不难。很多考生直言在考场中出现心理崩溃的现象。  2013年考研数学平均分  数一:73.86  数二:78.49  数三:81.80  2013年数学难度还是比较大的,出题思路与往年不同,尤其是数学2,很多考生反映难度非常大,上手非常不易。  2012年考研数学平均分  数一:80.11  数二:82  数三:81.54

考研英语我9月份做了06-07年的阅读连续两次28+,但是.......

可谓乱矣
私名
哥们,都什么时候还在讲究学习状态,现在是调节心理状态的时候,不要去在意那么多,PLEASE TRUST YOURSELF OK?现在怎么样把你学的发挥到最好,至于真题只能练练手的,保持你的感觉,我见过考前真题做的好考试完了还认为自己考的好,结果不到一百的人,09年考完数学哭的人我也见过,说实话当时我都快绝望了。你应该知道09年那道证明拉格朗日定理证明题,我们天天用简单吧,考场上能真真切切证明出来的还真不多。我们那年数学(数一)很多平时不错的结果70以下。考试还要看实战经验和临场发挥的,考场和平时绝对相差很大。别去在意你做真题的那个分数,OK?英语也是一样。英语做真题往往很有感觉,但是考试完了都说比往年难很多。数学呢感觉真题难,考完一看答案感觉比往年都简单。想想你准备了那么多,早起晚归多少个日日夜夜,一定行的千万不要怀疑自己。考前理想状态并不是你这几天做真题模拟题得了高分。而是你的心情很放松看见题就像看见老朋友一样,之前多少分都是浮云,真正说明一切的只有那四场考试。加油,you can do it

想问一下大家考研数学一历年难度

若骤若驰
机械女
数学一对数学要求较高,大多是理工科(数学系除外)的学生考试科目,数学二和数学一相比,考试内容较少,好像是学化工类的考数学二比较多数学三属于经管类的数学,.数学三内容和数学一差不多,但是没有数学一那么难 数学一、数学二复习参考书目:参考书目 作者 出版社 备注《高等数学》(上下册) 同济大学应用数学系 高等教育出版社 第五版或第四版《线性代数》 同济大学应用数学系 高等教育出版社 第四版《概率论与数理统计》 浙江大学盛骤等 高等教育出版社 第三版 数学三复习参考书目:参考书目 作者 出版社 备注《微积分》 吴传生等 高等教育出版社 经济数学《线性代数》 吴传生等 高等教育出版社 ——《概率论与数理统计》 吴传生等 高等教育出版社 ——《概率论与数理统计》 浙江大学盛骤等 高等教育出版社 ——注:《概率论与数理统计》可以在浙大版和吴传生版中选择一个。 数学学习是个慢功夫,而且容易忘,所以要不断积累,掌握知识点和阶梯技巧。数学的复习不能一步到位,建议分考生可以分阶段复习数学。第一阶段是复习课本。把课本找出来,看概念、定理公式,最重要是注意定理的条件和证明定理的方法;要对课本里的例题回顾;选作课本课后的习题练手,会做得题一定要做快做好。第二阶段是读一本考研复习资料,在课本的基础上提高一步,通过读掌握考研的行情,这个工作最好到8月底结束。第三阶段是一定要做真题,数学命题是连贯的,思绪是连续的,往年的例题或许还会考,做完真题后要想三个东西,即考什么,怎么考,什么地方容易出错。第四阶段,选择辅导书辅导班要慎重,辅导班一定要正规,以免中间出现差错,打乱自己的复习计划。在选择教材的时候同学们可以针对自己的情况选择。计划制定好之后,就要严格执行,这是数学复习所必须的,如果不严格执行,所要解决的问题就会越积越多,严重影响进度。大家每天都要严格要求自己做题,并且在此基础上认真总结,从而一步一步提高自己的数学能力。“眼高手低”是很多考生在复习数学时易犯的错误,很多考生对基础性的东西不屑一顾,认为这些内容很简单,用不着下劲复习,还有的考生只是“看”,认为看懂就行了,很少下笔去做题,结果在最后的考试中眼熟手生,难以取得好的成绩。所以,在复习数学时一定要脚踏实地,一步一个脚印,就像下象棋,要取敌方老帅,就要老老实实战败所有兵卒,稳扎稳打,步步为营,这样的话,才能以不变应万变,在最后的实考中占据主动。打好基础之后,要进行强化练习,逐步提高。一般来说,基础与提高是交插和分段进行的,复习的第一个阶段以基础为主,基础扎实了,再行提高。考生在复习过程中可能会容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。在这个时期考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,考研本来就是一场意志力的比赛,不仅需要丰富的知识和较高的能力,更要有坚强的意志力。只要坚持下去,就有成功的希望。此外,考生还要掌握有一些应试技巧,比如做题顺序建议为:填空、计算、选择、证明。因为选择题往往对基本概念要求很高,有时分析半天也难以取舍,很耗时;而证明题考查的是严密的逻辑推理,难度也比较大。所以它们应该放在后面。当然较熟悉的证明题也可先做。选择题中应用图表和带入赋值法是十分有效的手段。一定不要忘记。如果某题做出后结果很复杂,应马上否定,重做一遍。总之,数学虽然是个庞大的复习过程,需要花大力气,但是只要大家有坚强的毅力,掌握有效的学习方法,就会取得理想的成绩。