欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2001年考研数学二试题及答案

达德
野孩子
去百度文库,查看完整内容>内容来自用户:无敌超级狩猎者一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)=______.【答案】【考点】洛必达法则【难易度】★★【详解】解析:方法一:方法二:使用洛必达法则计算.(2)设函数由方程所确定,则曲线在点处的法线方程为______.【答案】【考点】隐函数的导数、平面曲线的法线【难易度】★★【详解】解析:在等式两边对x求导,得将代入上式,得故所求法线方程为即x−2y+2=0.(3)=_______.【答案】【考点】定积分的换元法【难易度】★★【详解】解析:由题干可知,积分区间是对称区间,利用被积函数的奇偶性可以简化计算.在区间上,是奇函数,是偶函数,故(4)过点且满足关系式的曲线方程为______.【答案】【考点】一阶线性微分方程【难易度】★★【详解】解析:方法一:原方程可改写为两边直接积分,得又由解得故所求曲线方程为:方法二:将原方程写成一阶线性方程的标准形式解得又由解得故曲线方程为:(5)设方程有无穷多个解,则a=______.【答案】【考点】非齐次线性方程组解的判定【难易度】★★【详解】解析:方法一:利用初等行变换化增广矩阵为阶梯形,有可见,只有当((

2001年考研数学三真题及全面解析

月迹
卑尔根
去百度文库,查看完整内容>内容来自用户:无敌超级狩猎者2001年全国硕士研究生入学统一考试数学三试题一、填空题(1)设生产函数为,其中Q是产出量,L是劳动投入量,K是资本投入量,而A,α,β均为大于零的参数,则当Q=1时K关于L的弹性为(2)某公司每年的工资总额比上一年增加20%的基础上再追加2百万.若以表示第t年的工资总额(单位:百万元),则满足的差分方程是___(3)设矩阵且秩(A)=3,则k=(4)设随机变量X,Y的数学期望都是2,方差分别为1和4,而相关系数为0.5.则根据切比雪夫不等式.(5)设总体X服从正态分布而是来自总体X的简单随机样本,则随机变量服从___分布,参数为_______二、选择题(1)设函数f(x)的导数在x=a处连续,又则( )(A)x=a是f(x)的极小值点.(B)x=a是f(x)的极大值点.(C)(a,f(a))是曲线y=f(x)的拐点.(D)x=a不是f(x)的极值点,(a,f(a))也不是曲线y=f(x)的拐点.(2)设函数其中则g(x)在区间(0,2)内( )(A)无界(B)递减(C)不连续(D)连续(3)设其中A可逆,则等于( )(A)(B)(C)(D).(4)设A是n阶矩阵,α是n维列向量.若秩秩,则线性方程组( )AX=α必有无穷多解AX=α必有惟一解.仅有零解必有非零解.(5)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于( )(A) -1 (B) 0 (C)(D) 1三、(本题满分5分)设u=f(x,y,z)有连续的一阶偏导数从而最大值为于是随机变量

2002年考研数学二试题及答案

不可以已
归故里
去百度文库,查看完整内容>内容来自用户:无敌超级狩猎者一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设函数在处连续,则______.【答案】【考点】函数的左极限和右极限、函数连续的概念【难易度】★★【详解】本题涉及到的主要知识点:若函数在处连续,则有;解析:在处连续即(2)位于曲线,下方,轴上方的无界图形的面积是______.【答案】1【考点】定积分的几何应用—平面图形的面积【难易度】★★【详解】解析:所求面积为.其中,.(3)微分方程满足初始条件,的特解是______.【答案】【考点】可降阶的高阶微分方程【难易度】★★★【详解】本题涉及到的主要知识点:可降阶的高阶微分方程,若缺,则令.解析:方法1:将改写为,从而得.以初始条件代入,有,所以得.即,改写为.解得.再以初值代入,所以应取且.于是特解.方法2:这是属于缺的类型.命.原方程化为,得或即,不满足初始条件,弃之,由按分离变量法解之,得由初始条件可将先定出来:.于是得,解之,得.以代入,得,所以应取“+”号且.于是特解是.(4)______.【答案】【考点】定积分的概念【难易度】★★★【详解】解析:记所以.(5)矩阵的非零特征值是______.【答案】这和于是所求曲线为【难易度】★★★

2001考研数学一试题及答案解析

善夭善老
去百度文库,查看完整内容>内容来自用户:天行健P郓蔚2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设(为任意常数)为某二阶常系数线性齐次微分方程の通解,则该方程为_____________.(2)设,则div(gradr)=_____________.(3)交换二次积分の积分次序:=_____________.(4)设矩阵满足,其中为单位矩阵,则=_____________.(5)设随机变量の方差是,则根据切比雪夫不等式有估计_____________.二、选择题(本题共5小题,每小题3分,满分15分.)(1)设函数在定义域内可导,の图形如右图所示,则の图形为(2)设在点附近有定义,且,则(A).(B)曲面在处の法向量为{3,1,1}.(C)曲线在处の切向量为{1,0,3}.(D)曲线在处の切向量为{3,0,1}.(3)设,则在=0处可导の充要条件为(A)存在.(B)存在.(C)存在.(D)存在.(4)设则与(A)合同且相似.(B)合同但不相似.(C)不合同但相似.(D)不合同且不相似.(5)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上の次数,则X和Yの相关系数等于(A)-1.(B)0.(C).(D)1.三、(本题满分6分)求.四、(本题满分6分)设函数在点处可微,且,,,.求.五、(本题满分8分)设=将展开成の幂级数,并求级数の和.六、(本题满分7分)计算,其中是平面与柱面の交线,从轴正向看去,为逆时针方向.七、设

2007年考研数学二真题及解析

唯唯诺诺
古人有之
去百度文库,查看完整内容>内容来自用户:20103110103182007年研究生入学考试数学二试题一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当x→0+时,与x等价的无穷小量是(A)1−ex(B)ln1+x(C)1+x−1(D)1−cosx1−x[](2)函数f(x)=(ex+e)tanx在[−π,π]上的第一类间断点是x=⎛1⎞x⎜ex−e⎟⎝⎠()(A)0(B)1(C)−π2(D)π2(3)如图,连续函数y=f(x)在区间[−3,−2],[2,3]上的图形分别是直径为1的上、下半∫圆周,在区间[−2,0],[0,2]的图形分别是直径为2的下、上半圆周,设F(x)=xf(t)dt,0则下列结论正确的是:(A)F(3)=−3F(−2)4(C)F(3)=3F(2)4(B)F(3)=5F(2)4(D)F(3)=−5F(−2)4(4)设函数f(x)在x=0处连续,下列命题错误的是:[](A)若limf(x)存在,则f(0)=0(B)若limf(x)+f(−x)存在,则f(0)=0.xx→0x→0x(B)若limf(x)存在,则f′(0)=0(D)若limf(x)−f(−x)存在,则f′(0)=0.xx→0x→0x[]()(5)曲线y=1+ln1+ex的渐近线的条数为x您所下载的资料来源于弘毅考研资料下载中心获取考研资料,请访问http://www.hykaoyan.net(A)0.(B)1.(C)2.(D)3.[](6

2008年考研数学二真题及解析

西伊
内省
去百度文库,查看完整内容>内容来自用户:20103110103182008年考研数学二试题分析、详解和评注一,选择题:(本题共8小题,每小题4分,共32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)=x2(x−1)(x+2),则f′(x)的零点个数为【】.(A)0.【答案】应选(D).(B)1.(C)2.(D)3.【详解】f′(x)=4x3+3x2−4x=x(4x2+3x−4).令f′(x)=0,可得f′(x)有三个零点.故应选(D).a∫(2)曲线方程为y=f(x),函数在区间[0,a]上有连续导数,则定积分xf′(x)dx在几何上0表示【】.(A)曲边梯形ABCD的面积.(B)梯形ABCD的面积.(C)曲边三角形ACD面积.【答案】应选(C).(D)三角形ACD面积.∫∫∫【详解】axf'(x)dx=axdf(x)=af(a)−af(x)dx,000∫∫其中af(a)是矩形面积,af(x)dx为曲边梯形的面积,所以axf'(x)dx为曲边三角形ACD00的面积.故应选(C).(3)在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意的常数)为通解的是【】.(A)y′′′+y′′−4y′−4y=0.(B)y′′′+y′′+4y′+4y=0.(C)y′′′−y′′−4y′+4y=0.(D)y′′′−y′′+4y′−4y=0.【答案】应选(D).【详解】由y=C1ex+C2cos2x+C3sin2x,可知其特征根为λ1=1,λ2,3=

2009年考研数学二试题及答案解析

鬼丈夫
真幸
去百度文库,查看完整内容>内容来自用户:羽翼10292009年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数为123无穷多个【答案】【解析】由于,则当取任何整数时,均无意义.故的间断点有无穷多个,但可去间断点为极限存在的点,故应是的解.故可去间断点为3个,即.(2)当时,与是等价无穷小,则【答案】【解析】,故排除.另外,存在,蕴含了,故排除.所以本题选.(3)设函数的全微分为,则点不是的连续点不是的极值点是的极大值点是的极小值点【答案】【解析】因可得.,又在处,,,故为函数的一个极小值点.(4)设函数连续,则【答案】【解析】的积分区域为两部分:,,将其写成一块,故二重积分可以表示为,故答案为.(5)若不变号,且曲线在点上的曲率圆为,则函数在区间内有极值点,无零点无极值点,有零点有极值点,有零点无极值点,无零点【答案】【解析】由题意可知,是一个凸函数,即,且在点处的曲率,而,由此可得,.在上,,即单调减少,没有极值点.对于,(拉格朗日中值定理)而,由零点定理知,在上,有零点.故应选.(6)设函数在区间上的图形为:【解析】(Ⅱ)若二次型

2013年考研数学二真题15题解析

高丽僧
去百度文库,查看完整内容>内容来自用户:我心纳幽兰2013年全国硕士研究生入学统一考试数学二试题答案一、选择题:1选择题:1~8小题,小题,每小题4分,共32分.下列每题给出的四个选项中,下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.指定位置上.合题目要求的,请将所选项前的字母填在答题纸...其中α(x)<(1)设cosx−1=xsinα(x),(A)比x高阶的无穷小(C)与x同阶但不等价的无穷小【答案】(C)π2,则当x→0时,α(x)是(B)比x低阶的无穷小(D)与x等价的无穷小()【解析】Qcosx−1=x⋅sinα(x),cosx−1~−12x21∴x⋅sinα(x)~−x22又Qsinα(x)~α(x)1∴sinα(x)~−x21∴α(x)~−x2所以选(C).n→∞∴α(x)与x同阶但不等价的无穷小.(2)(设函数y=f(x)由方程cos(xy)+lny−x=1确定,则limn[f()−1]=2n)(A)2【答案】(A)(B)1(C)-1(D)-2【解析】因为x=0时,y=1即f(0)=1.2Qlimnf()−1=lim2⋅n→∞nn→∞又Qcos(xy)+lny−x=12f()−f(0)n=2f'(0)=2y'x=02−0n1⋅y′−1=0,y将x=0,y=1,代入上式得y′=1.∴选(A).两边对x求导得:−sin(xy)

哪位有2018张宇考研数二真题解析PDF,请上传一份给我。

兼名
谷风
只有书啊 哪有pdf,而且现在看真题早了有2017年数二的吗追答我都没有,我只有书