名焉
去百度文库,查看完整内容>内容来自用户:suijiazhuang12005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线的斜渐近线方程为【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】因为a=,,于是所求斜渐近线方程为(2)微分方程满足的解为.【分析】直接套用一阶线性微分方程的通解公式:,再由初始条件确定任意常数即可.【详解】原方程等价为,于是通解为=,由得C=0,故所求解为(3)设函数,单位向量,则=.【分析】函数u(x,y,z)沿单位向量}的方向导数为:因此,本题直接用上述公式即可.【详解】因为,,,于是所求方向导数为=(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则.【分析】本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】=(5)设均为3维列向量,记矩阵,,如果,那么2.【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】由题设,有=,于是有(6)从数1,2,3,4中任取一个数,记为X,再从中任取一个数,记为Y,则=.【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分(C)(B)记 (2)