欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2019年考研数学一真题附答案解析

日凿一窍
末班车
去百度文库,查看完整内容>内容来自用户:GG135795959862019年考研数学一真题解析一、选择题1—8小题.每小题4分,共32分.1.当时,若与是同阶无穷小,则()(A)(B)(C)(D)【答案】(C)【详解】当时,,所以,所以.2.设函数,则是的()(A)可导点,极值点(B)不可导的点,极值点(C)可导点,非极值点(D)不可导点,非极值点【答案】(B)【详解】(1),所以函数在处连续;(2),所以函数在处不可导;(3)当时,,函数单调递增;当时,,函数单调减少,所以函数在取得极大值.3.设是单调增加的有界数列,则下列级数中收敛的是()(A)(B)(C)(D)【答案】(D)【详解】设是单调增加的有界数列,由单调有界定理知存在,记为;又设,满足,则,且,则对于正项对于级数,前项和:也就是收敛.4.设函数,如果对于上半平面内任意有向光滑封闭曲线都有那么函数可取为()(A)(B)(C)(D)【答案】(D)【详解】显然,由积分与路径无关条件知,也就是,其中是在上处处可导的函数.只有(D)满足.5.设是三阶实对称矩阵,是三阶单位矩阵,若,且,则二次型的规范形是()(A)(B)(C)(D)【答案】(C)【详解】假设是矩阵的特征值,由条件可得,也就是矩阵(设函数分别求解线性方程组

2019年考研数学一考试题完整版

王巍
非常美
去百度文库,查看完整内容>内容来自用户:文都教育2019考研数学(一)考试真题(完整版)来源:文都教育一、选择题:1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当x0,若xtanx与xk是同阶无穷小,则k=A.1.B.2.C.3.D.4.2.设函数f(x)xx,x0,则x=0是f(x)的xlnx,x0,A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设{un}是单调增加的有界数列,则下列级数中收敛的是A.n.n1unB.(1)n1n1.un).C.(1un1unn1D.(un12n12un).)4.设函数Q(x,yx.如果对上半平面(y>0)内的任意有向光滑封闭曲线C都有y2ÑP(x,Cy)dxQ(x,y)d,那么函数y0P(x,y)可取为A.yx2.y3B.1x2.yy3C.11.xyD.x1.y5.设A是3阶实对称矩阵,E是3阶单位矩阵.若A2A2E,且|A|=4,则二次型xTAx的规范形为A.y1y2y3.222B.y1y2y3.222C.y1y2y3.222D.y1y2y3.2226.如图所示,有3张平面两两相交,交线相互平行,它们的方程ai1xai2yai3zdi(i1,2,3)组成的线性方程组的系数矩阵和增广矩阵分别记为A,

2019考研数学二真题

皇侃
承负
去百度文库,查看完整内容>内容来自用户:好读书不求甚解2019年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)当x0时,若xtanx与xk是同阶无穷小,则k=()(A)1(B)2(C)3(D)4(2)曲线yxsinx2cosx(x2)的拐点是()2(A)(0,2)(B)(,2)(C)(,)22(D)(3,3)22(3)下列反常积分发散的是()(A)xexdx0(C)0arctan1x2xdx(B)xex2dx0(D)01xx2dx(4)已知微分方程yaybycex的通解为y(C1C2x)exex,则a,b,c依次为()(A)1,0,1(B)1,0,2(C)2,1,3(D)2,1,4(5)已知平面区域D(x,y)xy2,记I1Dx2y2dxdy,I2sinDx2y2dxdy,I3(1cosx2y2)dxdy则()D(A)I3I2I1(B)I2I1I3(C)I1I2I3(D)I2I3I1(6)设函数f(x),g(x)的2阶导函数在xa处连续,则limxaf(x)g(x)(xa)20是两条曲线yf(x),yg(x)在xa对应的点处相切及曲率相等的()(A)充分不必要条件(C)必要不充分条件(B)充分必要条件(D)既不充分也不必要条件(

2018考研数学一真题最强解析及点评(没有之一),给你2019考研数学最科学的指引

微曰
吾岂
去百度文库,查看完整内容>内容来自用户:高教金通(武汉)教育科技有限公司2019考研数学备考最科学的指南2018考研数学真题超级详解及点评2018数学真题唯一最全面、准确、详尽的解析(数学一)试题解析及点评版权为贺惠军老师所有,转载请给予说明。送分题绝对值函数求导,实质考查导数定义的基本掌握。利用导数定义,写出零界点0处的导数,左导不等于右导则不可导。《考研数学超级金讲》(以下简称《金讲》)第70页有专题详解绝对值函数的导数计算。本题难度远低于《金讲》本节例7,属送分题。考查简单解析几何关系公式的应用。设出点,套公式解出即得答案,属送分题。送分题级数和求值问题。唯一思路将级数转化为7种常用函数形式,通过形式比较得出对应的数值,属送分题。送分题同型例题送分题区间有对称性,必用考查定积分性质及其对称性的应用。对称性定理简化计算。相同的积分区间的定积分大小的比较一定只是对被积函数大小的比较,这类题几乎每年必考。这一结论在《超级金讲》109页和暑期集训中反复强调的重点。暑期集训至少讲过2道难度远超出本题的例题。先利用对称性化简,然后比较被积函数大小即得答案,属送分题。难题可能是大部分同学卷面遇上的第一道难题,本题区别一般矩阵相似性的判断,一般相似性判断是通过求其共同相似于一个对角矩阵,但这里矩阵不能相似对角化,超出常规试题的判断范围,增加了难度。《金讲》518页有对相似性性质有最全面的归纳和对定义的超倍辨析,如果学习不疏忽这

2018~2019年考研数学三真题谁有啊,求助攻啊!

砉然响然
无丧
iphonexr白苹果在上海可以

2019考研数学用什么书比较好

敌基督
光亮
数学把高等数学同济大学第六版或者是第七版都可以,线性代数是第四版或者是第五版,概率论与数理统计也是差不多,只要把这几本书吃透了就足够了,后面买本习题练一练,我买的是天道考研练习题,还不错,知识点蛮全面的。你可以去看一看

给你们讲一个关于考研数学有多难的故事

割草者
六顺
考研数学是道坎,不少考研的同学们都倒在了这。正所谓得数学者得考研,数学的高难度一直让人望而却步,与其害怕它,不如选择合适的方法加上自身的努力来战胜它。2019考研复习已经开始,黑龙江考研网小编为大家分享考研政治,数学,英语习题,同学们一起来练练手吧!想必大家也对2018考研“李林泄题”有所耳闻,先不论这件事是不是真的,但确实伤了不少努力考研的人的心。泄题这种事最不应该有,原本考研这件事就没有绝对的公平,还要故意制造更大的不公平,如果是真的简直不可原谅。不过,虽然小编不能也不会泄题,但是小编可以给大家揭秘一下考研数学命题组!掌握我们命运的人,了解一下~一、考研数学的三代命题组我们把命题组整体换人视为一代,那么大体来说,从80年代末到2000年基本同属一代,其中1998-2000年数学命题组中换了半数新成员,所以风格开始明显改变。第一代组的代表人物有:胡金德教授(线代组长)、蔡燧林教授、徐兵教授(高数组长)、周概容教授(概率组长)、范培华教授(经济类组长)、龚东保教授等等。目前最红的教辅多为一代组成员的作品或修订版,如曾经的二李全书现在的李范(看到论坛上说二李变李范就不好了的言论,可发一笑,范培华教授也是一代组的中坚人物)。现在的李王全书(该书高数、线代大部分内容源自蔡燧林教授和胡金德教授的一本02年出版的老书)。从1998-2000年组中开始过渡换人到2001年之后基本全换,可以称为二代命题组。其中有合工大(大学数学杂志的编写校,数学很强)的朱士信教授、黄有度教授、东南大学陈建龙教授(线代组长)、大连理工数学研究所的两位教授,其余来自南开,哈工大,上财等校。教育部从这个时期开始建立更成熟的题库制,上述命题老师所出的题可能还会经过另一拨教授的再加工。二代组除合工大两位教授的同僚们每年坚持出很高质量的合工大五套系列外,基本不出现在考研的教辅圈内,很可能是由于大部分没到退休年龄。三代组的构成是机密,目前只能知晓其中有南开、华南理工、西交的教授,有国防科大的教授,有中科院数学所的教授。从2015年开始正式掌勺,15年的试水难度是很温和的,有许多回归基础的东西,甚至考了教材上的求导商法则证明这样的题。而16年给了相当多考生当头一棒,完全不同的题风和较大的计算量让许多考生在考后直接崩溃。17年总体难度又回归平和,只有少量题体现数学思维水平,以供体现区分度。(小编表示17年考研数三不简单吧?也可能是小编智商有限嘤嘤嘤~)刚刚过去的18年又是相当惨淡(尤其是数学二和数学三),很多考生叫苦不迭,不过普遍认为难度要低于16年,因为16年出了许多新套路,是往年找不到的套路,而且有各种陷阱,但是18年几乎没有什么新套路,很多题第一眼看上去相当熟悉。由此可以看出这个组的命题风格已基本成熟稳定。总体上,这四年的数学是一年难一年容易(据此推测,19年数学难度会降低),但总的命题风格保持不变,就是大部分题考察基础概念的理解程度与计算准确度。虽说很多人都预测今年考研数学会简单一点,但是也真的不可掉以轻心,很多题在平时做和上考场不是一个感觉,要达到足够的熟练度才不会慌。二、18考研数学命题特点1、冷门的简单数一、二、三中都不乏低频(冷门)考点,数一中第8题考察了假设检验(此前30余年只在1998年考察过一次)、第11题考察了旋度,数二第16题对平均值定义的考察,数三更是考察了疑似超纲的二阶差分方程(11题),此外线性代数中对矩阵方程的考察也是颇具新意。虽然对于冷门知识点的考察较往年多,但是对于这些低频知识点的考察非常浅,以数一的这道假设检验为例,只要弄清楚假设检验的定义并且知晓阿尔法是犯第一类错误亦即“弃真”的概率就不难通过理解选出D选项,此外旋度的考察也是直接套用公式即可。冷门的知识点考的简单这也是遵循了考试大纲对知识点掌握程度的要求(注:考纲对于知识点的要求从低到高为了解、理解、掌握、会,低频考点都来自于“了解”这一层次)。2、计算量大近年来考研数学已经有了计算量变大的趋势,但在2016、2018年尤其是18考研这一点表现得尤为突出。有一道线性代数的解答题,这道题的第二问考察的是矩阵方程,往年考察的都是非齐次线性方程组,今年考察把等式右边的列向量换成了一个三阶矩阵,求解方法本质上没有改变,但运算量相当于大了两倍。在其他题目上诸如级数求和的选择题、不定积分的解答以及条件极值问题等等都有着相当的计算量。3、重基础、重应用注重对基础的考察是考研数学30余年来未曾改变的主旋律,这句即使放在今年的试题上来说也是合适的。18考研数学依然有110分左右的分值是基础知识的考察,同学之所以感觉非常难是因为剩下30~40分的题目“偏、怪、冷”,这些题目的区分度不如之前年份,只把最好的学生区分出来了,同时这些题目的出现又使得同学们心态失衡,在做基础题目时心虚、慌张而失分。另外一点是近些年越来越频繁的出现数学应用题,应用题包括几何应用、物理应用、经济应用。有一道带应用背景的题目,试题所考察的条件极值这个知识点本身不存在任何难度,但这道题的难度首先是在于要把应用问题抽象成数学语言,其次是有一定的运算量,此外导数的几何应用也是每年必考题型。三、19考研数学复习策略1、全面复习,不放过考纲上的任何一个知识点在近几年高密度的考察了一些偏、冷知识点后,所有同学都不能再抱有侥幸心理,认为此前没考过或考察的极少的知识点今年也同样不会出现,一旦出现,即使只是一个4分小题,它对你意味着也绝不仅仅是4分,的是心态,心态一旦失衡,就是大面积的丢分。超低频知识点的复习可以放在考前一两个月进行。2、眼高手低要不得除非是你一眼就能看出标准答案的题目,否则所有数学题都希望大家能动手去做,从基础阶段就要扎扎实实练好计算,争取会做的就一定要能做对,并且做得快。3、基础万万不能丢很多同学喜欢偷懒取巧,直接从刷题开始,依靠着教辅资料或者是老师总结的一些固定题型的解题套路,希望能在考场上取得不错的分数,但这几乎行不通(除非你遇上17年数一、数二的难度),因此基础阶段对教材的复习万万不能丢。考研数学每年都在变化,16的计算难、17年相对简单、18年的题目考查更偏一些,根据历年考研的人数来看这个还是很好理解的。那么2019年的考研数学应该不会太简单,毕竟考研是一个选拔性的考试,需要选拔高级人才。►不管怎样给大家几点意见:第一、数学在基础复习的时候不要想什么考什么不考,早点准备,过课本的时候都要面面俱到。第二、不要用试题来评价自己的能力,因为试题在你做其他题的时候都会涉及到一些。第三、一定要多做模拟试题,给模拟试题留充足的时间,免得在考场上自己不适应。

2019考研数一国家线预测多少分啊?

马龙
娃娃谷
答: 2019考研数一国家线预测368分问题问的挺好的很高兴为你回答

都有那些学校考研数学是自主命题啊?

盗跖大怒
虫师
没有学校的考研数学是自主命题的,因为数学属于全国统考科目,由全国统一命题。并不是所有专业都需要考数学的,考研需要考数学的专业:(1)须使用数学一的招生专业:工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程等等。(2)须使用数学二的招生专业:工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。考研数学基础阶段,吃透课本,掌握大纲结合本科教材和前一年的大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。扩展资料高等数学考研考试要求1、理解函数的概念2、了解函数的有界性、单调性、周期性和奇偶性3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念4、掌握基本初等函数的性质及其图形,了解初等函数的概念5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系6、掌握极限的性质及四则运算法则7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限9、理解函数连续性的概念,会判别函数间断点的类型10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质参考资料来源:百度百科 - 全国硕士研究生统一招生考试参考资料来源:中国研究生招生信息网 - 全国硕士研究生招生工作管理规定