盗跖大怒
去百度文库,查看完整内容>内容来自用户:a11234961995年全国硕士研究生入学统一考试理工数学一试题详解及评析一、填空题2(1)lim(1+3x)sinx=.x→0【答】e6.【详解1】用第二类重要极限:6x2lim(1+3x)sinx=lim⎧⎨(1+3x)13x⎫sinx⎬=e6.x→0x→0⎩⎭【详解2】化为指数函数求极限:()lim1+3x2sinxlim2ln(1+3x)6ln(1+3x)lim=ex→0sinx=ex→03x=e6.x→0∫d(2)0xcost2dt=dxx2.∫【答】0cost2dt−2x2cosx4.x2【详解】∫(∫)∫()d0xcost2dt=dx0cost2dt=0cost2dt+xcosx22(−2x)dxx2dxx2x2∫=0cost2dt−2x2cosx4.x2(3)设(a×b)⋅c=2,则⎡⎣(a+b)×(b+c)⎤⎦⋅(c+a)=.【答】4.【详解】⎡⎣(a+b)×(b+c)⎤⎦⋅(c+a)=⎡⎣(a+b)×b⎤⎦⋅(c+a)+⎡⎣(a+b)×c⎤⎦⋅(c+a)=(a+b)×c+(b×c)⋅a=(a×b)⋅c+(a×b)⋅c=4.∑()(4)幂级数∞n=12nn+−3nx2n−1的收敛半径R=.【答】3.()【详解】令an=2nn+−3nx2n−1,则当liman+1=1x2<1时,an→∞n3即x2<3,也即x<3时,此幂级数收敛,因此收敛半径为3.⎡1⎢⎢300⎤⎥⎥(5)设三阶方阵A、B满足关系式:A-1BA=6A+BA,且A=⎢⎢014