欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

写一份调查报告

抱德炀和
北漂
去百度文库,查看完整内容>内容来自用户:微力图文  篇一:如何写一份标准的调查报告2  如何写一份标准的调查报告  撰写调查报告是整个调查活动的最后一个阶段,也是十分重要的一个阶段。调查数据经过统计分析之后,只是为我们得出有关结论提供了基本依据,只有将调查研究成果用文字形式表达出来,才能使调查服务社会,因此调查报告是调查结果的集中表现。  能否撰写出一份高质量的调查报告,是决定调查本身成败与否的重要环节。调查报告的内容和质量非常关键,它是通过文字、图表等形式将调查结果表现出来,使人们对所调查的现象或问题有一个全面系统的了解和认识。  一份优秀的调查报告,必须具备下列条件。前言  (1)调查报告应结构严谨、语言简练、有说服力,?标题页  词汇尽量通俗易懂。?目录  (2)调查报告应该能让读者了解调查过程的全貌,?委托信  并将调查过程中各个阶段收集的有关资料组织在一起。?摘要及小结  (3)调查报告应该对调查活动所要解决的问题提出明确主体的结论或建议。?引言一篇规范的市场调查报告,一般应包含下列三个部分:?调查方法前言部分、主题部分、结尾部分,如表1-1所示。?调查结果?结论与建议表1-1结尾  ?附录一、操作步骤  (一)撰写前言  前言部分通常包括标题、目录、委托信、摘要及小结等。

你知道为什么质量优良的白象牌电池在国外却无人问津?

瞻明
俟命
真正的原因,是国内山寨品太多,并殃及出口市场,好好一个品牌,就这样没落了好一阵子在上世纪90年代,白象电池名气不小,却遭到了被假货无情“鲸吞”和“蚕食”的威胁。市场上伪劣假冒货日甚一日层出不穷,近到毗邻的苏浙,远到哈尔滨、广州,冒出许多公然打着白象、天鹅的旗号,以假乱真,甚至以假打真。譬如一只传统的白象牌大号电池,当时工厂最低售价七角几分,其利润只有几分钱。而假白象因材差质次成本低,每只仅卖五角,致使消费者上当。更让人难以置信的是,低劣的假白象“兵临城下”,开始从各地涌入上海,当时的上海电池厂“打假办”在上海小商品市场买来的4节白象电池中,就有3节是假的。  猖獗的假货不仅盯住白象的国内市场,还将魔爪伸向海外市场。西非是天鹅电池的国际热销市场,却因为邻省某出口公司将大批冒牌天鹅运往西非压价竞销,迫使真天鹅身价大跌,电池厂蒙受巨大牌誉和经济损失。早在二战期间,白象就以其可靠的质量和良好的信誉,远渡重洋外销东南亚和欧洲市场,成为当年与洋货抗衡的“主力队员”。为了让白象长大长好,该厂积三代人心血,引进、消化和吸收国外的先进设备和工艺,开发了纸版、层叠、碱性、镍镉等多种系列百余个品种,最好时年销量达4亿多只,产品远销40多个国家和地区,芳名远播海外(尤其是华侨聚居的东南亚),出口创汇几千万美元。几代人的心血为白象电池带来了诸多荣誉,其先后数十次获国家、市、部优质产品称号,连续十八年荣获上海市名牌产品称号,2011年“白象”牌注册商标更是被国家商务部认定为中华老字号。

江苏省扬州市2019-2020学年高一下学期期末调研测化学试题_word版有答案

叶适
史伯
去百度文库,查看完整内容>内容来自用户:孙中成2019-2020学年度第二学期江苏省扬州市期末检测试题高一化学可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 Mg-24 S-32 Fe-56 Cu-64选择题(共40分)单项选择题(本题包括15小题,每题2分,共30分。每小题只有一个选项符合题意)1.下列做法科学的是A.将废电池深埋B.大量使用化肥C.开发太阳能、风能和氢能D.大量开发利用可燃冰2.下列有关化学用语正确的是A.N2的电子式:B.质子数为53,中子数为78的碘原子:C.S2-的结构示意图:D.乙烯的结构简式:CH2=CH23.A、B、C、D均为气体,对于A+ 3B2C + D的反应来说,以下化学反应速率的表示中反应速率最快的是A.v(A)=0.4 mol/(L•s) B.v(B)=0.8 mol/(L•s)C.v(C)=0.6 mol/(L•s) D.v(D)=0.1 mol/(L•s)4.下列只含有离子键的化合物是A.HI B.NaOHC.Br2D.NaCl5.下列各组物质互为同系物的是A.红磷与白磷B.甲烷与丙烷C.乙醇与二甲醚D.H、D和T6.实现下列变化时,需克服相同类型作用力的是A.水晶和干冰的熔化B.食盐和冰醋酸熔化C.氯化铵和水的分解D.纯碱和烧碱的熔化7.用NA表示阿伏加德罗常数的值。下列说法正确的是A.0.1 mol氮气中所含的氮原子数是0.1NAB.标准状况下,2.24 LBD(((

小课题研究

任曙
能所
可从这样几个方面写:1)什么是春联?2)春联有什么作用?适用场合等3)春联的题材要求。4)拟定春联内容应注意的一些问题,比如语法。5)春联选材、颜色、字体等。6)还可以考虑写一些春联创新方面的内容。以上内容供参考吧。那像是春联的起源、发展、习俗等方面用不用写写春联的起源可能比较困难,如果资料较全也可以写。由于你是做春联的小课题研究,所以最好集中一些要点主题,同时结合自己想说明的重点来组织材料。我不知道春联,但知道废旧电池的: 五 二 (一)调查背景:自从第一只化学电源伏打电池问世以来,已经历了两个世纪了,在这期间,电池为我们人类做出了巨大的贡献,特别是本世纪70年代以来,越来越多的移动电话,BP机,手提电脑等电子产品走进消费者的日常生活,使电池这一家族获得了巨大的发展,但凡事有利必有弊,大量电池废弃后给人类环境带来了巨大的污染,据测试一粒钮扣电池能污染60万升水,一个人一生也喝不完,一节1号电池烂在地里,能使一平方米土地失去使用价值,多么触目惊心的数字呀,于是我们课题组选择了这个课题,希望能对此作进一步的了解,从而为废电池回收做些力所能及的事,为我们的环保事业贡献一份自己的力量. 据《郑州日报》报道,郑州有两名大学生从网上看到一则报道:"德国老太太在中国旅游数日,由于找不到废电池回收站,只好把一些废电池带回国内".两位即懂环保更有爱国之心的学子看后深受感动.他们成立了专门回收废电池的环保协会,并号召周围的同学响应起来,队伍不断壮大.现在已有200多名在校大学生参加. 《无锡日报》报道,年仅6岁的北京女孩王君婧"小人办大事",为宣传废旧电池对环境的危害,她在父亲的陪伴下历时50天穿越滇藏,新藏公路,行程一万七千余公里,途中捡拾废旧电池一千余枚. (二)研究目标:调查我国回收废旧电池的经济效益,可行性,精铅与再生铅的生产,我们同学对电池的使用和认识。(三)研究过程:我们分工行动,调查研究目标中的目标,最后调查出了以下资料:1我国废旧电池回收利用的经济可行性分析 废电池回收利用的成本可以归结如下: 废电池从众多消费者手中集中到废电池处置场所的费用。 废电池在处置场所进行处理时所需的生产性支出。 废电池回收所得产物的销售成本和财务管理成本。 回收利用废电池过程中的环保费用。 通过政策上的扶持,规模化和产业化的改造,电池生产的低汞化和无汞化,可充电电池的生产,有效地降低了回收利用中的成本,降低了处理的难度,容易实现规模化和产业化效益。 废电池回收利用的收益表现如下: 从回收利用过程中所得材料的销售收入。以我国每年可以生产100亿只电池计算,全年可回收15.6万吨锌,22.6万吨二氧化锰,2080吨铜,207万吨氯化锌,7.9万吨氯化铵,4.03万吨炭棒,还有各种有色贵金属的回收价值更高。有人计算,即使我们只是回收其中的一半,就可以达到两万/天的利润,全国电池回收的年利润可达7亿多元。由于行政上的罚款,提高了普通电池的生产成本,从而不得不提高普通电池的销售价格,再而人们会选择性价比高的新型电池,这有利于电池的更新换代,从而促进电池产业的升级。从另一侧面也是提高了新型电池的利润空间。 2我国废旧电池的处理能力分析 我国经济实力的不断增强,不仅吸引了外资企业的进驻,而且带动了我国本地企业的蓬勃发展,我国经济活动活跃有生气,面对我国庞大的市场需求,废旧电池回收利用企业具有强大的生命力,如:广州某一电池回收企业可以回收处理旧电池20T/天,但是仅仅回收到了 15T/年的量,而且大部分电池是从海关缴获得来的.如:北京一外资回收利用电池企业,可以达到150T/天的处理能力,而且开发的产品具有市场前景,却苦于没有足够的废旧电池而不得不向国外进口旧电池,但另一方面,数以百万吨的旧电池被填埋在垃圾填埋场。以我国年产销电池超过150多亿只的巨大数量,现在的企业还不能完全消化,可喜的是,现在越来越多的处理企业马上建设,相信随着技术的不断改进,处理能力的不断提高,我国的废旧电池处理企业完全有有足够的处理能力。 3 与国外回收技术的对比分析 目前国外发达国家的回收技术普遍较我国先进,这是由具体的历史条件下决定的,我国在短短的时间里发展迅猛,许多技术和设备达到了或接近国外的先进水平。如陕西省西安市废电池的回收工艺为物理—化学常温无害处理,技术先进、可靠,基本达到了产业化要求,为我国废电池无害化处理及综合利用提供了技术支持。我国具有我国的特有的优势,一是我国的废电池总量巨大,这为市场提供了基础,二是我国的人力资源丰富,庞大的人力市场为我国提供了低的生产成本;三是我国具有深厚的科研力量,科研人才不断涌现,为我国的科研事业不断地提供后备军;四是我国是一个中央集权的社会主义国家,国家的方针政策得到了更好的实施和管理,极大地调动了生产积极性。以及以下数据的表格:(四)数据:年 份 精铅总产量 再生铅总产量 再生铅百分比 1990 29.65 2.82 9.51% 1991 30.45 4.63 15.21% 1992 36.60 4.83 13.20%1993 41.19 4.43 10.76% 1994 46.79 9.50 20.30% 1995 60.79 17.53 28.84% 1996 70.62 14.36 20.33% 1997 70.75 12.37 17.48% 年均增长 13.20% 23.50%我们作了一次关于同学们对废电池回收意识的调查,本次调查的对象为高一高二部分同学,共收到调查问卷217张,其中有效问卷213张,:序号 调查内容 选择项 人数 百分比 1 是否使用小型电器,如手电筒,随身听,CD机,复读机等 A 是 191 89.7% B 否 22 10.3% 2 你使用普通电池还是充电电池. A 普通电池 172 80.8% B 充电电池 41 19.2% 3 每星期大约有几节电池为你牺牲 A 1-2节 153 71.8% B 3-4节 38 17.8% C 5-6节 4 1.9% D 6节以上 18 8.5% 4 你如何处理废电池 A 扔垃圾箱 117 55.0% B 交给生活委员 48 22.5% C 随便一扔 48 22.5%5 你对废电池危害的认识情况 A 不清楚 24 11.3% B 不太清楚 63 29.5% C 能列出几条 99 46.5% D 很清楚 27 12.7%6 你对学校生活部收废电池活动的认识 A无所谓 29 13.6% B没事找事 26 12.2% C该的 74 34.7% D觉得非常好 85 39.9%(五)结果分析: 铅蓄电池是电池回收中的生力军,我国铅矿资源有限,回收再生铅可节约能源,再生铅生产成本比原生铅低38%.我国的再生铅工业50年代就有,但当初没能引起有关部门的重视,再生铅年产量一直在千吨位徘徊,直到1990年才达到2.82万吨.近十年来,再生铅工业取得了显著进展,产量迅速增长,已初步形成独立产业,1994年产量达到9.5万吨,是快速腾飞的标志年.此后至今,年产量均在10万吨以上.1997年达12.37万吨,是1990年的4.4倍,年均增长达20.3%,再生铅年产量占铅总量20%左右,但从总体水平看,再生铅企业数量多,规模小,耗能高,污染重,工艺技术落后,金属回收和综合利用率低.特别是我国立法滞后,企业生产和销售不规范,低水平重复建设严重.我国废铅蓄电池再生铅厂近300家,生产能力从几十吨到上千吨不等,2万吨以上的屈指可数整体水平仅相当于国际60年代水平. 分析以上数据可得,有70%多的同学每星期用1-2节电池,甚至有同学一星期用六节以上,废电池有很广泛的来源,而同学对废电池回收的意识较弱,绝大多数同学把电池扔垃圾箱或随手一扔,对电池的危害性认识不够,再利用意识不强,对废电池危害十分清楚的同学还不到15%,所以很有必要在校园内进行废电池与环保宣传. (六)建议: 针对上述种种情况,并结合我国地广人多的实际,我们对废电池回收提出以下几点建议: 1.政府立法,从法律上保证这项工作的持续性.责令环保部门对废电池进行回收,然后提炼可利用物质,使之无害化处理. 2. 以单位(如机关,部队,学校,工厂,商店,大饭店旅馆,街道办事处,物业小区等级)行政系统为中心建立废电池回收网. 3.工会,青年团,学生会,妇联等组织,号召各自成员积极参加回收废电池的行动中来. 4. 进行广泛的社会宣传,增加公民意识.有必要在学校教学中,增加废电池回收与环境保护的内容. 5.有关回收废电池活动的专门奖惩制度. 6.公共场所尤其是在大商场,可以设立专门的回收柜台(七)结论:经过了详细的分析和论证,我们可以得出结论:我国可以大力回收和利用废旧电池。回收和利用废旧除了具有巨大的经济效益,还有巨大的环境效益。

红三角的发展前景

狙公赋芋
弟子问曰
发展战略是企业的愿景目标,具有整体性、长远性、指导性和相对稳定性。中央十六届五中全会将天津滨海地区纳入国家整体发展战略,作为滨海新区一员,在适应周边环境剧烈变化的环境下,力求达到环境变化、企业战略、现有资源的优化整合。天津碱厂“十一五”规划的发展战略概括为:优化主体,发展两翼,建设新区。一、 优化主体“优化主体”将是以稳定总量、安全运行、提升品质、积蓄力量、培养人才为主进行优化,纯碱年产100万吨,其中重灰50万吨;氯化铵30万吨;具备1200t/h蒸汽供应量,年上网电量8.5亿度;产品质量、消耗、环保继续保持同行业领先水平。二、 发展两翼利用厂区热电站等优良资产,积极参与股份制改造,合作建立新的企业,盘活优良资产,为滨海新区的供热供电服务。目前企业已具备东至保税区11km,西至高速公路入口9km,北至开发区四大街6km的供热区域;以及充分发挥永利气体公司国内唯一同时具备可口可乐、百事可乐认证资格的品牌优势,做好食用二氧化碳、高纯氩、液氧、氧气等气体产品,谋求更大发展。利用港口和地域优势,进一步开展进出口贸易、发展现代物流业。逐步发展成为综合经营型贸易公司,到“十一五”末,进出口贸易额达到2.0亿美元。三、建设新区天津碱厂搬迁改造工程已经启动,总投资近百亿的新区将建在天津临港工业区,占地2平方公里,“十一五”期间将形成规模。加快天津滨海新区的开发开放已纳入国家发展战略,环渤海地区将是我国未来重要的经济增长极。天津碱厂地处滨海新区中心,企业搬迁将是企业实现跨跃式发展难得的历史机遇。新厂区建成投产后,销售额将达到70亿元人民币。到2017年建厂100周年时,销售额达到100亿元人民币。实现“百年华诞,百亿规模”的宏伟目标。投资环境天津碱厂坐落在渤海之滨的天津市塘沽区,占地469万平方米,其中厂区占地187万平方米。毗邻天津经济技术开发区、天津港和天津港保税区,地理位置十分优越--距天津港货运码头仅6公里,距天津滨海国际机场30公里,距北京首都国际机场170公里;通过京津塘、唐津高速公路可进入全国高速公路网,由京津塘高速公路可直达北京,距离150公里。天津碱厂有充裕的公用工程配套能力,淡水供应能力1300吨/小时,循环水供应能力3000吨/小时;现有高压锅炉4台,中压锅炉4台,低压锅炉7台,总供汽能力达1260吨/小时;自备电站采用热电联产,发电能力为160MW;此外,天津碱厂还具备氧气供应能力16000标准立方米/小时,氮气供应能力25000标准立方米/小时;厂区有铁路专用线15条,总长度11千米,与京山铁路相连,并拥有大量室内外仓储面积可供使用。天津碱厂现有资产29.9亿元人民币,2004年实现工业总产值18.3亿元人民币,完成进出口贸易额6440万美元。企业拥有各类管理及工程技术人员1337多名。有严格的质量管理控制体系,2001年通过了ISO9001:2000质量管理体系认证。与天津碱厂兴建合资合作项目可在天津经济技术开发区或天津港保税区注册,享受其优惠政策。冠军产品具有88年历史和国内外著名品牌“红三角”的天津碱厂,坚持以市场为导向,以实现可持续发展为目标,以调整效益型产品结构为手段,积极发展循环经济,竞争力获得大幅提升。2004年底,该厂生产的“红三角”牌精铵年产量达到6.68万吨,占国内年产总量的19%,占世界年产总量的12%;精铵年出口量达到3.44万吨,占国内年出口总量的41%,一举成为中国乃至世界最大的精铵生产商和出口商。精铵(亦称工业氯化铵)是天津碱厂的主要产品之一,主要用于制药、精密铸造、集成电路、染坊等领域,市场前景广阔。为做大、做强优质精铵产品、培育新的经济增长点,天津碱厂在2002年底,及时作出精铵增产扩建改造的决策,全部工程仅用113天即告竣。新工艺大胆采用新型防腐材料,使整个生产工艺在不添加任何化学试剂的情况下,实现精铵产品无锈、无黑渣,产品的内外在质量均高于优级品,实物质量达到国际标准,精铵年产量从2002年的4万吨提高到2004年的6.68万吨。“红三角”牌精铵备受国内外市场的青睐,东南亚及欧美客商纷纷前来订货,客户遍及除南极洲外的各大洲,形成了一大批稳定的客户群,其出口价格也呈现出不断上涨的趋势。随着国际市场的不断拓展,欧洲最大的精铵生产商BASF2004年主动上门拜访,希望与天津碱厂合作。目前,“红三角”牌精铵在国际市场已形成日趋明显的影响力。新厂搬迁2009年1月20日,天津碱厂搬迁改造工程龙头项目——煤气化(B)系列大型设备成功吊装,拉开了决胜2009的序幕,创出了国内同行业三项新纪录:一是大件设备从港口到施工现场运输距离最短(仅有4.5公里);二是现场黄金焊缝组对和焊接用时最少(只有两道焊缝,仅用72小时);三是吊装作业工期最短(从起吊到结束仅用时13天)。天津碱厂搬迁改造工程全部采用“国内领先,世界一流”的生产技术,立足发挥“红三角”和“海王星”品牌效应和企业的管理、技术优势,依托港口,以煤气化为龙头,海洋化工为基础,碳一化工为核心,将海洋化工、石油化工有机结合,体现循环经济发展要求,建成现代化大型化工基地。一期项目建设主要包括:2套日处理煤2000吨的煤气化装置,2套60000Nm3/h制氧能力的空分装置,30万吨/年合成氨装置,80万吨/年联碱及产品系列装置,50万吨/年甲醇装置,4万吨/年聚甲醛装置,20万吨/年醋酸装置,22.5万吨/年丁辛醇装置,并配套建设热源、总降站及水务处理系统等十大项目。一期项目总投资118亿元,建成后年均销售额99.2亿元,年利税总额28.9亿元,力求“十一五”第五年企业销售额达到百亿元规模。目前,二期项目规划按照“技术水平先进,市场成长性好,与一期项目衔接”的原则,正在抓紧调研论证之中。通过大规模的技术改造与引进,天津碱厂搬迁改造工程建成后将实现五大转变、呈现出三大特点。五大转变是:从单一的产品结构转变为多种产品,从无机产品转变为有机与无机结合,从粗放性生产转变为集约化生产,从高物耗、低效益产品转变为精细化和高附加值产品,从国内局部技术领先转变为全部世界一流。三大特点是:第一,各装置之间互为上、下游,聚集效应明显;第二,采用清洁、高效工艺,符合循环经济发展的要求;第三,产品链开放,延伸性、带动性强。2009年是企业发展非常关键的一年。面对严峻形势,天津碱厂提出了“统筹兼顾,双线奋战,提质提速,决胜09”的总体要求,发扬“责任所在、拼命为之、确保成功”的精神,全力以赴保增长,齐心协力渡难关,科学发展上水平,做到目标不变、速度不慢、势头不减,坚决打好煤气化、公用工程和聚甲醛等项目建设投产三大攻坚战役,确保实现新区建设“四六六六”进度目标(以煤气化为主线,狠抓四大节点目标;以公用工程为关键,确保六大配套工程;以聚甲醛为重点,实现六大项目竣工;以现场为中心,完善六大保证体系),再创天津碱厂新的辉煌,谱写新的篇章。日本逃生设施红三角除了是一种纯碱的品牌外,也是日本一种防火灾的逃生设施。日本人忧患意识非常强,关于这一点,大家熟知的可能是日本对地震预防、装备和逃生知识的培训。其实,日本人为减少火灾损害所采用的“红三角”逃生法,也值得我们学习。走在日本大街上,随意抬头一看,在任何一栋高楼的窗户上,总会发现一竖排的“红三角”,从顶楼往下,贴到了底层。

影响化学发展的十大历史事件

妻妾不和
玄览
高分子材料 受热发粘,受冷变硬。1839年美国用硫磺及加热天然橡胶,使其交联成弹性体,应用于轮胎及其他橡胶制品,用途甚广,这是高分子化工的萌芽时期。1869年,美国用樟脑增塑硝酸纤维素制成塑料,很有使用价值。1891年在法国贝桑松建成第一个人造丝厂。1909年,美国制成,俗称电木粉,为第一个,广泛用于电器绝缘材料。 石油化工 1920年美国用生产,这是大规模发展石油化工的开端。1939年美国标准油公司开发了临氢催化重整过程,这成为芳烃的重要来源。1941年美国建成第一套以为原料用制乙烯的装置。在第二次世界大战以后,由于化工产品市场不断扩大,石油可提供大量廉价有机化工原料石油化工 1920年美国用生产,这是大规模发展石油化工的开端。1939年美国标准油公司开发了临氢催化重整过程,这成为芳烃的重要来源。1941年美国建成第一套以为原料用制乙烯的装置。在第二次世界大战以后,由于化工产品市场不断扩大,石油可提供大量廉价有机化工原料,同时由于化工生产技术的发展,逐步形成石油化工。高分子材料 受热发粘,受冷变硬。1839年美国用硫磺及加热天然橡胶,使其交联成弹性体,应用于轮胎及其他橡胶制品,用途甚广,这是高分子化工的萌芽时期。1869年,美国用樟脑增塑硝酸纤维素制成塑料,很有使用价值。1891年在法国贝桑松建成第一个人造丝厂。1909年,美国制成,俗称电木粉,为第一个,广泛用于电器绝缘材料。 这些萌芽产品,在品种、产量、质量等方面都远不能满足社会的要求。所以,上述基础有机化学品的生产和高分子材料生产,在建立起石油化工以后,都获得很大发展。 化学工业的大发展时期 从20世纪初至战后的60~70年代,这是化学工业真正成为大规模生产的主要阶段,一些主要领域都是在这一时期形成的。和石油化工得到了发展,进行了开发,逐渐兴起。这个时期之初,英国和美国的等人提出的概念,奠定了化学工程的基础。它推动了生产技术的发展,无论是装置规模,或产品产量都增长很快。 合成氨工业 20世纪初期异军突起,用物理化学的反应平衡理论,提出氮气和氢气直接合成氨的催化方法,以及原料气与产品分离后,经补充再循环的设想,进一步解决了设备问题。因而使德国能在第一次世界大战时建立第一个由氨生产的工厂,以应战争之需。合成氨原用焦炭为原料,40年代以后改为石油或天然气,使化学工业与石油工业两大部门更密切地联系起来,合理地利用原料和能量。 石油化工 1920年美国用生产,这是大规模发展石油化工的开端。1939年美国标准油公司开发了临氢催化重整过程,这成为芳烃的重要来源。1941年美国建成第一套以为原料用制乙烯的装置。在第二次世界大战以后,由于化工产品市场不断扩大,石油可提供大量廉价有机化工原料,同时由于化工生产技术的发展,逐步形成石油化工。甚至不产石油的地区,如西欧、日本等也以原油为原料,发展石油化工。同一原料或同一产品,各化工企业却有不同的工艺路线或不同催化剂。由于基本有机原料及高分子材料单体都以石油化工为原料,所以人们以乙烯的产量作为衡量有机化工的标志。80年代,90%以上的有机化工产品,来自石油化工。例如、等,过去以电石乙炔为原料,这时改用氧氯化法以乙烯生产氯乙烯,用丙烯氨氧化(见)法以生产丙烯腈。1951年,以天然气为原料,用蒸汽转化法得到一氧化碳及氢,使得到重视,目前用于生产、,个别地区用生产。 高分子化工 高分子材料在战时用于军事,战后转为民用,获得极大的发展,成为新的材料工业。作为战略物质的天然橡胶产于热带,受阻于海运,各国皆研究。1937年德国法本公司开发获得成功。以后各国又陆续开发了顺丁、丁基、氯丁、丁腈、异戊、乙丙等多种合成橡胶,各有不同的特性和用途。方面,1937年美国 成功地合成尼龙 66(见),用熔融法纺丝,因其有较好的强度,用作降落伞及轮胎用。以后涤纶、维尼纶、腈纶等陆续投产,也因为有石油化工为其原料保证,逐渐占有天然纤维和人造纤维大部分市场。塑料方面,继酚醛树脂后,又生产了、醇酸树脂等热固性树脂。30年代后,品种不断出现,如迄今仍为塑料中的大品种,为当时优异的绝缘材料,1939年高压用于海底电缆及雷达,低压聚乙烯、等规聚丙烯的开发成功,为民用塑料开辟广泛的用途,这是齐格勒-纳塔催化剂为高分子化工所作出的一个极大贡献。这一时期还出现耐高温、抗腐蚀的材料,如、,其中聚四氟乙烯有塑料王之称。第二次世界大战后,一些也陆续用于汽车工业,还作为建筑材料、包装材料等,并逐渐成为塑料的大品种。 精细化工 在方面,发明了活性染料,使染料与纤维以化学键相结合。合成纤维及其混纺织物需要新型染料,如用于涤纶的,用于腈纶的,用于涤棉混纺的活性分散染料。此外,还有用于激光、液晶、显微技术等特殊染料。在方面,40年代瑞士P.H.米勒发明第一个有机氯农药之后,又开发一系列有机氯、有机磷,后者具有胃杀、触杀、内吸等特殊作用。嗣后则要求高效低毒或无残毒的农药,如仿生合成的类。60年代,、发展极快,出现了一些性能很好的品种,如吡啶类除草剂、苯并咪唑杀菌剂等。此外,还有抗生素农药(见),如中国1976年研制成的井冈霉素用于抗水稻纹枯病。医药方面,在1910年法国制成606砷制剂(根治梅素的特效药)后,又在结构上改进制成914,30年代的类化合物、甾族化合物等都是从结构上改进,发挥出特效作用。1928年,英国发现,开辟了抗菌素药物的新领域。以后研究成功治疗生理上疾病的药物,如治心血管病、精神病等的药物,以及避孕药。此外,还有一些专用诊断药物问世。摆脱天然油漆的传统,改用,如醇酸树脂、、丙烯酸树脂等,以适应汽车工业等高级涂饰的需要。第二次世界大战后,丁苯胶乳制成水性涂料,成为建筑涂料的大品种。采用高压无空气喷涂、静电喷涂、电泳涂装、阴极电沉积涂装、光固化等新技术(见),可节省劳力和材料,并从而发展了相应的涂料品种。 现代化学工业 20世纪60~70年代以来,化学工业各企业间竞争激烈,一方面由于对反应过程的深入了解,可以使一些传统的基本化工产品的生产装置,日趋大型化,以降低成本。与此同时,由于新技术革命的兴起,对化学工业提出了新的要求,推动了化学工业的技术进步,发展了精细化工、超纯物质、新型结构材料和功能材料。 规模大型化 1963年,美国凯洛格公司设计建设第一套日产540t(即600sh.t)合成氨单系列装置,是化工生产装置大型化的标志。从70年代起,合成氨单系列生产能力已发展到日产 900~1350t,80 年代出现了日产1800~2700t合成氨的设计,其吨氨总能量消耗大幅度下降。乙烯单系列生产规模,从50年代年产50kt发展到70年代年产100~300kt,80年代初新建的乙烯装置最大生产能力达年产 680kt。由于冶金工业提供了耐高温的管材,因之毫秒裂解炉得以实现,从而提高了烯烃收率,降低了能耗。其他化工生产装置如硫酸、烧碱、基本有机原料、合成材料等均向大型化发展。这样,减少了对环境的污染,提高了长期运行的可靠性,促进了安全、环保的预测和防护技术的迅速发展。 信息技术用化学品 60年代以来,大规模集成电路和电子工业迅速发展,所需电子计算机的器件材料和信息记录材料得到发展。60年代以后,多晶硅和单晶硅的产量以每年20%的速度增长。80年代周期表中 ~V族的二元化合物已用于电子器件 随着半导体器件的发展,气态源如磷化氢 (PH )等日趋重要。在大规模集成电路制备过程中,需用多种,其杂质含量小于1ppm,对水分及尘埃含量也有严格要求。大规模集成电路的另一种基材为,其质量和稳定性直接影响其集成度和成品率。此外,对基质材料、密封材料、焊剂等也有严格要求。1963年,荷兰菲利浦公司研制盒式录音成功后,日益普及。它不仅用于音频记录、视频记录等,更重要的是用于计算器作为外存储器及内存储器,有磁带、磁盘、磁鼓、磁泡、磁卡等多种类型。为重要的信息材料,不仅用于光纤通信,且在工业上、医疗上作为内窥镜材料。 高性能合成材料 60年代已开始用(俗称尼龙)、聚缩醛类(如)、,以及丙烯腈-丁二烯-苯乙烯三元共聚物 ()等为结构材料。它们具有高强度、耐冲击、耐磨、抗化学腐蚀、耐热性好、电性能优良等特点,并且自重轻、易成型,广泛用于汽车、电器、建筑材料、包装等方面。60年代以后,又出现、、、等。尤其是为耐高温、耐高真空、自润滑材料,可用于航天器。其纤维可做航天服以抗辐射。聚苯并噻唑和聚苯并咪唑为耐高温树脂,耐热性高,可作烧蚀材料,用于火箭。共聚、共混和复合使结构材料改性,例如多元醇预聚物与经催化反应,为尼龙聚醚嵌段共聚物,具有高冲击强度和耐热性能,用于农业和建筑机械。另一种是以纤维增强树脂的高分子复合材料。所用树脂主要为环氧树脂、不饱和聚酯、聚酰胺 聚酰亚胺等 所用为玻璃纤维、或(常用丙烯腈基或沥青基)。这些复合材料比重轻、比强高、韧性好,特别适用于航天、航空及其他交通运输工具的结构件,以代替金属,节省能量。和含氟材料也发展迅速,由于它们具有突出的耐高低温性能、优良电性能、耐老化、耐辐射,广泛用于电子与电器工业、原子能工业和航天工业。又由于它们具有生理相容性,可作人造器官和生物医疗器材。 能源材料和节能材料 50年代原子能工业开始发展,要求化工企业生产重水、吸收中子材料和传热材料以满足需要。航天事业需要高能。固体推进剂由胶粘剂、增塑剂、氧化剂和添加剂所组成。液体高能燃料有液氢、煤油、偏二甲肼、无水肼等,氧化剂有液氧、发烟硝酸、四氧化二氮。这些产品都有严格的性能要求,已形成一个专门的生产行业。为了满足节能和环保的要求,1960年美国试制成可以实用的膜,以淡化、处理工业污水,以后又扩展用于医药、食品工业。但这种膜易于生物降解,也易水解,使用寿命短。1970年,开发了芳香族聚酰胺反渗透膜,它能够抗生物降解,但不能抗游离氯。1977年,改进后的复合膜用于海水淡化,每立方米淡水仅耗电23.7~28.4MJ 此外,还开发了和用膜等。聚砜中空纤维气体分离膜,用于合成氨尾气的氢氮分离及其他多种气体分离。这种技术比其他工业分离方法可以节能。精细以其硬度见长,用作切削工具。1971年,美国福特汽车公司及威斯汀豪斯电气公司以β-氮化硅 (β-Si N )为燃汽透平的结构材料,运行温度曾高达1370℃,提高功效,节省燃料,减少污染,为良好的节能材料,但经10年试验,仍存在不少问题,尚须进一步改进。现主要用作陶瓷发动机、透平叶片、导电陶瓷、人造骨等。陶瓷的主要物系有氧化物系,如氧化铝(Al O )、氧化锆(ZrO )等,和非氧化物系,如碳化物(SiC)、氮化物(BN)、氮化硅(Si N )等。80年代,为改进陶瓷的脆性,又在开发硅碳纤维增强陶瓷。 专用化学品得到进一步发展,它以很少的用量增进或赋予另一产品以特定功能,获得很高的使用价值。例如食品和饲料添加剂,塑料和橡胶助剂,皮革、造纸、油田等专用化学品,以及胶粘剂、防氧化剂、表面活性剂、水处理剂、催化剂等。以催化剂而言,由于电子显微镜、电子能谱仪等现代化仪器的发展,有助于了解催化机理,因而制备成各种专用催化剂,标志催化剂进入了新阶段。

求一篇“植物营养学研究论文”

灵人
春风镇
  摘要:本文综述了蔬菜硝酸盐含量过高对人体的危害,影响蔬菜硝酸盐含量的因素,降低蔬菜硝酸盐含量的措施及其效果,并对今后的研究提出了建议。  关键词:蔬菜;硝酸盐;影响因素;栽培措施  1前言  蔬菜是人们日常生活中不可或缺的食品,但蔬菜又是易于富集硝酸盐的作物,人体吸收的硝酸盐80% 以上来自于蔬菜[1]。故硝酸盐含量是评价蔬菜品质的重要指标之一。虽然硝酸盐对人体没有直接的毒害作用,但进入人体后,会在微生物的作用下还原为有毒的亚硝酸盐,它可与人体血红蛋白反应,使之失去载氧功能,造成高铁血红蛋白症。长期摄入亚硝酸盐会造成智力迟钝[2]。另一方面。亚硝酸盐还可间接与人类摄取的其它食品、医药品、残留农药等成分中的次级胺反应,在胃腔中(pH=3)形成强致癌物—— 亚硝胺,从而诱发消化系统癌变[3]。因此,硝酸盐污染问题已引起人们的普遍关注,世界各国学者对蔬菜硝酸盐积累及其控制途径进行了日益广泛和深入的研究。近年来许多研究单位对蔬菜中的硝酸盐污染以及如何控制进行了大量的研究。影响蔬菜硝酸盐积累的因素很多,与蔬菜的种类品种有关,与水分、温度、光照有关,也与施氮量、氮肥种类、施氮方法等因素有关,但施肥是非常重要的因素之一。要减少蔬菜硝酸盐含量,一是要进行合理施肥,控制施肥种类、数量,掌握好施肥方法等。二是调节水、温、光等环境条件,从而达到控制植株根系对NO3-的吸收速率,降低其吸收量,进而加速硝酸盐在植物体内的代谢的目的。  2 影响蔬菜硝酸盐含量的因素  2.1内部因素  影响蔬菜硝酸盐含量的内部因子主要包括:蔬菜种类、品种、部位和生育期,这些因子主要受遗传因子所控制[4]。  2.2.1 蔬菜种类不同其硝酸盐含量差异明显。现在研究证实,不同蔬菜种类的硝酸盐含量从大到小的次序为根菜类> 叶菜类> 瓜类> 茄果类。  2.2.2 同一种类蔬菜不同品种硝酸盐含量也不相同,如莴苣Bellone品种叶片中硝酸盐含量为2878mg/kg,而Tornade品种硝酸盐含量仅为123mg/kg,2个品种间硝酸盐含量差异十分悬殊。  2.2.3 蔬菜不同部位的硝酸盐含量也有很大差异,一般而言,根>茎>叶>果;叶柄>叶片;外叶(下部叶)>内叶(上部叶)。  2.2.4 生育期对于菠菜而言,其体内硝酸盐含量随着生育期的延长而降低,这可能是由于随菠菜生育期推进其吸收土壤硝酸盐能力下降,或随植株增大硝酸盐相对量降低造成的。因此菠菜不宜提早收获。  2.2外部因素  蔬菜积累硝酸盐的过程也受外部其他环境因素如土壤水分、光照、温度、栽培措施等显著影响[5]。  2.2.1光 光照对植物体内的硝酸盐代谢起着极为重要的作用,是决定植株硝酸盐含量的主要因素之一。光照强度、光周期和光照持续时间均影响植株硝酸盐含量。在低光照强度下,植株积累大量的硝酸盐, 而在较高的光强下,硝酸盐的积累减少[6]。光照影响植株硝酸盐含量的主要原因是硝酸还原酶活性受光照强度的调节,而且光照正常条件下, 光合作用良好,植株生长量大,吸入的硝酸盐被稀释而不致累积很多,同时光合作用可提供硝酸还原的能量,使之转化为铵态氮,因此也有利于减少硝酸盐的累积[7]。  2.2.2 温度 温度高低影响植物对硝酸盐的吸收速率。在适温范围内,随温度升高,植物生长速度加快,根系对硝酸盐的吸收也加快,促进植株地上部生长,NRA也随之提高使植株体内硝酸盐积累减少。温度降低,根系吸收硝酸盐能力减弱,同时,NRA也因温度降低而减弱,以致硝酸盐积累增加[8]。  2.2.3 水分 硝态氮的吸收、运输与水分运动密切相关。质流是水分驱动的物质运动,而质流对作物吸收硝态氮的贡献率达70%-90%。蒸腾作用的持续进行,使溶解于水中的硝态氮向植物体内各处移动,分布于不同器官的组织内部及外部空间的水分中。另外,硝态氮的代谢也离不开水分[9]。  2.2.4 氮肥供应 大部分蔬菜为喜硝态氮作物,于是人们为追求高产而盲目追施硝态氮肥,而NO3-含量却随氮肥用量增加而不断升高,不能及时被还原。另一方面,施肥方法不当,基肥不足,追肥次数偏多,导致硝酸盐积累增加。  3 降低硝酸盐含量的控制途径和措施  综上所述,有关影响植物体内硝酸盐积累的因素是多方面的,作物之间的差异也十分明显,因此要有效降低硝酸盐的积累首先要分析研究对象所特有的影响因子,针对主要因子通过明确的调控措施,达到降低硝酸盐积累的目的。  3.1 施肥措施  蔬菜硝酸盐严重超标,除了与蔬菜的种类、品种、遗传特性不同有关外,一个重要影响因素是:施用化肥,超量施肥,重施氮肥,没有均衡的控制和调节土壤肥力。控制蔬菜硝酸盐过量残留的措施是,严格控制氮肥的施用量,少施化学氮肥,应以有机肥为主。因为有机肥矿化速度慢,不会导致硝酸盐在植株体内明显积累,并能提高蔬菜的产品质量和口感度[10]。  3.1.1 合理施用氮肥  ⑴搭配施用不同形态的氮肥  邱孝煊等报道,每公顷氮素用量450Kg,空心菜中硝酸盐含量,氯化铵<硫酸铵<尿素<碳酸氢铵<硝酸铵.施氯化铵的空心菜硝酸盐比其它化学氮肥低10%以上,这与氯化铵中的Cl-能抑制硝化作用有关。李海云等报道,铵态氮和硝态氮的比例不同影响硝酸盐的积累量,经多种蔬菜试验表明,NH4+-N所占比例越大,NO3-含量降低越明显。其原因在于NH4+被植物吸收后立即参加含氮有机物的形成,而NO3-则要先还原,后一过程需消耗额外能量并在相应酶系参与下进行。因此,施铵态氮肥可使蔬菜硝酸盐含量减低。朱祝军等研究的结果是,对不结球生长的营养液中,铵态氮和硝态氮浓度(mmol/L)比例以1:1为最佳。[11]  ⑵适宜的氮肥施用量  氮素是植物生命活动的必需养分,且需要量在各元素中居首位。任祖金等报道,偏施和滥用氮肥,是造成蔬菜硝酸盐积累的重要原因,提出300Kg/hm2为氮肥用量的临界值。在保证产量的同时,适当降低氮肥施用量能降低硝酸盐的富集。  ⑶严格掌握氮肥的施用方法  氮肥要深施、早施。深施可以减少氮素挥发,延长供肥时间,提高氮肥利用率。早施则利于蔬菜植株早发快长,延长肥效,减少硝酸盐积累。还应根据蔬菜种类、栽培条件、气候条件等灵活施肥。无公害蔬菜生产过程中,其硝酸盐含量是不断变化的。据研究,随着氮肥追肥时间的推移,蔬菜体内的硝酸盐含量有逐渐减少的趋势。对蔬菜来讲,追肥的时间应安排在采收前30天,追肥的原则为“少量多次”[12]。  ⑷控制氮肥施用时间  研究结果表明,追氮后8天是蔬菜收获上市的安全始期,随着时间延长,硝酸盐累积具有明显下降趋势,至追氮后18天,蔬菜体内硝酸盐分别比始期下降21.9% ~34.7% 。因此,得出蔬菜“攻头控尾”的施氮技术模式[13]。  3.1.1有机肥无机肥配合施用  菜田施用有机肥是一项降低蔬菜硝酸盐积累,提高产品营养价值的有益的农业措施。这是因为生物降解有机质是个渐进过程,养分释放缓慢,适合于蔬菜对养分吸收;土壤中有机质能促进土壤反硝化过程,从而有效降低土壤中硝态氮浓度。和氮肥相比,施有机肥能降低蔬菜50% 的NO3-的积累量 。据此,要广辟肥料,确保蔬菜生产对有机肥的需求。但有机肥施用量过大,也会引起蔬菜中硝酸盐的大量积累,菜田有机肥施用量最大限量为60t·hm2。  化学氮肥与厩肥、土杂肥配合施用,能有效控制和降低蔬菜中的硝酸盐积累。通常无机氮与有机氮的比为l:1;氮、磷、钾三要素的比例,100天以内的短季节蔬菜为l:0.2:0.5,长季节蔬菜为l:O.5:0.6。[14]  3.1.2 推广测土配方施肥、平衡施肥技术  测土配方施肥,是控制蔬菜硝酸盐积累的重要措施之一。大量研究结果表明,氮肥施用量与蔬菜体内硝酸盐含量呈正相关,磷、钾肥的施用量则与之呈负相关。这是由于:钾在植物体内能促进蛋白质的合成,钾的浓度越高,促进作用越强,从而提高了氮的利用率,蔬菜中K含量每递增0.1% ,NO3-量下降33.O% ;磷是硝酸还原酶和亚硝酸还原酶的重要组成部分,参与NO3-的还原和同化。高祖明等指出,N、K比过大是造成叶菜NO3-积累的重要原因,且缺磷比增氮更易引起叶菜组织内NO3-积累。因此,在蔬菜生产上应大力推广测土配方施肥技术,做到缺什么补什么,缺多少补多少。达到平衡施肥。这样,不仅能降低蔬菜中硝酸盐的含量,而且增产效果十分显著[15]。  3.1.4 叶面喷施微肥  施用微量元素肥料,对于减少蔬菜中硝酸盐的积累有一定的效果。蔬菜收获前lO天,叶面喷施微肥,能提高产量和品质,收获前1天用草酸、甘氨酸等喷洒,可明显降低蔬菜中的硝酸盐含量。近年来的研究结果表明,叶面喷施钼、锰等微肥,对降低蔬菜硝酸盐积累有良好的效果。这是因为钼和锰元素在植物体内参与硝态氮的还原过程,钼是硝酸还原酶的组成部分,锰是多种代谢酶的活化剂。对蔬菜叶面喷施钼肥和锰肥,能激活蔬菜体内的硝酸还原酶,从而使蔬菜体内硝态氮的还原同化量超过其吸收量,降低蔬菜硝酸盐的含量。  叶菜类不能叶面施氮肥。叶面喷施直接与空气接触,铵离子易变成硝酸根离子被叶片吸收,硝酸盐积累增加,又不耐贮存[16]。  3.2 改善生态条件  3.2.1 改善光照条件,增加光照时间  保证正常光照,是硝酸盐在植物体内同化并降低其浓度的决定条件之一。露地和保护地条件下光照强度降低20% ,蔬菜硝酸盐含量增加150%; 强光照下可使菠菜的硝酸盐含量较之弱光照来得低。正常光照条件下,光合作用良好,植株生长量大,吸入的硝酸盐可被稀释而不致积累太多,同时还促进硝酸还原酶的合成,程高其活性,并为硝酸还原提供能量,因此有利于硝酸盐含量的下降[17]。  3.2.2 改善土壤水分供应状况  研究表明,土壤水分充足时,蔬菜的生长量可提高109.9%~174.8% ,而硝酸盐含量却降低19.4%~ 25.0%,硝酸盐还原酶活性也明显降低。因此,在蔬菜生产中应注意水分管理,避免由于缺水造成水分胁迫[17]。  在干旱情况下,蔬菜的硝酸还原酶的合成受阻,分解加快,硝态氮积累显著增加。因此,在收获前几天进行灌水,可使硝酸盐含量下降。  3.3 配合使用氮肥抑制剂  为降低和控制蔬菜硝酸盐的含量,目前国外普遍采用氮抑制剂来抑制土壤硝化细菌的活性,从而达到减少土壤和蔬菜中硝酸盐积累的目的。在现有的氮抑制剂中,使用效果较好的首推双氰胺(DCD)。在氮肥中,添加10~20%的双氰胺与单施尿素相比,可使青菜茎叶中的硝酸盐含量降低10~30%。将双氰铵与碳铵一起施用效果更佳,可使叶柄和叶片中的硝酸盐含量减少25~45%。[18] 因此,蔬菜在施用氮肥时,应按纯氮量的10~20%添加双氰胺,与化肥拌匀后施用,控制硝酸盐积累的效果最佳。  3.4 选育低富集硝酸盐的品种  由于硝酸盐积累存在遗传差异,所以选育低积累的品种被认为是控制蔬菜硝酸盐含量的有效方法之一,低硝酸盐含量已成为育种的1个重要目标。国外有育成硝酸盐富集力弱的菠菜新品种的报道,但国内目前还没有选育成功低积累的蔬菜品种。随着对蔬菜硝酸盐积累的遗传规律的进一步认识,特别是随着现代分子生物技术的发展,利用基因工程选育低富集硝酸盐品种必将成为重要的发展方向。  3.5 调整收获时期和时间  由于不同生长发育阶段的蔬菜硝酸盐含量不同,一些蔬菜生长前期大于后期,所以,适当晚收有利于降低蔬菜中的硝酸盐,降低幅度可达数倍甚至数十倍。另外,光照、温度等外部因素对蔬菜硝酸盐积累也有明显影响。因此,生产中应根据1d内温度和光照变化的节奏确定适宜的收获时间,同时应根据光、温等条件的季节变化以及蔬菜生长发育进程确定适宜的收获时期。[20]  4 存在的问题与展望  目前,蔬菜体内硝酸盐的积累问题已引起广大科研工作者的关注,而且在这一领域的研究已取得了一些成果,但是,尚缺乏控制效果好、简单易行的方法。一些控制硝酸盐积累的措施目前还很难用于生产实践,另外一些方法控制效果不太明显,还有一些方法或观点虽在理论上成立,但目前还没有取得应用成果。我国目前蔬菜生产条件及农民的科技水平,特别是目前国内生产者对产量的追求以及消费市场对供应量的要求决定了在短期内难以显著降低氮肥的施用量(氮肥是蔬菜体内硝酸盐的主要来源),因此,不降低氮素投人,如何控制蔬菜硝酸盐积累就成为一个重要研究课题。针对这一研究目标,从营养互作,水氮互作等营养生理以及代谢方面出发进行NO3-的转化的基础研究就显得非常必要。另外,由于蔬菜种类繁多,遗传基础及适宜生长条件、同化利用硝酸盐能力差异较大,所以,无论是关于硝酸盐积累过程的基础研究还是控制措施的探讨均要有明确针对性。  5 小结  综上所述,通过调整施肥措施、改善生态条件、使用抑制剂、选育低富集硝酸盐的蔬菜品种、调整收获时期和时间等,对减少蔬菜中硝酸盐累积量有很大的作用,应该对菜农加强宣传,采用合理的技术措施来减少蔬菜中硝酸盐累积,既使菜农节约肥料成本、增产增收,又减小对消费者的危害。蔬菜是人们日常生活中不可或缺的食品,但蔬菜又是易于富集硝酸盐的作物,人体吸收的硝酸盐80% 以上来自于蔬菜[1]。故硝酸盐含量是评价蔬菜品质的重要指标之一。虽然硝酸盐对人体没有直接的毒害作用,但进入人体后,会在微生物的作用下还原为有毒的亚硝酸盐,它可与人体血红蛋白反应,使之失去载氧功能,造成高铁血红蛋白症。长期摄入亚硝酸盐会造成智力迟钝[2]。另一方面。亚硝酸盐还可间接与人类摄取的其它食品、医药品、残留农药等成分中的次级胺反应,在胃腔中(pH=3)形成强致癌物—— 亚硝胺,从而诱发消化系统癌变[3]。因此,硝酸盐污染问题已引起人们的普遍关注,世界各国学者对蔬菜硝酸盐积累及其控制途径进行了日益广泛和深入的研究。近年来许多研究单位对蔬菜中的硝酸盐污染以及如何控制进行了大量的研究。影响蔬菜硝酸盐积累的因素很多,与蔬菜的种类品种有关,与水分、温度、光照有关,也与施氮量、氮肥种类、施氮方法等因素有关,但施肥是非常重要的因素之一。要减少蔬菜硝酸盐含量,一是要进行合理施肥,控制施肥种类、数量,掌握好施肥方法等。二是调节水、温、光等环境条件,从而达到控制植株根系对NO3-的吸收速率,降低其吸收量,进而加速硝酸盐在植物体内的代谢的目的。 2 影响蔬菜硝酸盐含量的因素 2.1内部因素 影响蔬菜硝酸盐含量的内部因子主要包括:蔬菜种类、品种、部位和生育期,这些因子主要受遗传因子所控制[4]。 2.2.1 蔬菜种类不同其硝酸盐含量差异明显。现在研究证实,不同蔬菜种类的硝酸盐含量从大到小的次序为根菜类> 叶菜类> 瓜类> 茄果类。 2.2.2 同一种类蔬菜不同品种硝酸盐含量也不相同,如莴苣Bellone品种叶片中硝酸盐含量为2878mg/kg,而Tornade品种硝酸盐含量仅为123mg/kg,2个品种间硝酸盐含量差异十分悬殊。 2.2.3 蔬菜不同部位的硝酸盐含量也有很大差异,一般而言,根>茎>叶>果;叶柄>叶片;外叶(下部叶)>内叶(上部叶)。 2.2.4 生育期对于菠菜而言,其体内硝酸盐含量随着生育期的延长而降低,这可能是由于随菠菜生育期推进其吸收土壤硝酸盐能力下降,或随植株增大硝酸盐相对量降低造成的。因此菠菜不宜提早收获。 2.2外部因素 蔬菜积累硝酸盐的过程也受外部其他环境因素如土壤水分、光照、温度、栽培措施等显著影响[5]。 2.2.1光 光照对植物体内的硝酸盐代谢起着极为重要的作用,是决定植株硝酸盐含量的主要因素之一。光照强度、光周期和光照持续时间均影响植株硝酸盐含量。在低光照强度下,植株积累大量的硝酸盐, 而在较高的光强下,硝酸盐的积累减少[6]。光照影响植株硝酸盐含量的主要原因是硝酸还原酶活性受光照强度的调节,而且光照正常条件下, 光合作用良好,植株生长量大,吸入的硝酸盐被稀释而不致累积很多,同时光合作用可提供硝酸还原的能量,使之转化为铵态氮,因此也有利于减少硝酸盐的累积[7]。 2.2.2 温度 温度高低影响植物对硝酸盐的吸收速率。在适温范围内,随温度升高,植物生长速度加快,根系对硝酸盐的吸收也加快,促进植株地上部生长,NRA也随之提高使植株体内硝酸盐积累减少。温度降低,根系吸收硝酸盐能力减弱,同时,NRA也因温度降低而减弱,以致硝酸盐积累增加[8]。 2.2.3 水分 硝态氮的吸收、运输与水分运动密切相关。质流是水分驱动的物质运动,而质流对作物吸收硝态氮的贡献率达70%-90%。蒸腾作用的持续进行,使溶解于水中的硝态氮向植物体内各处移动,分布于不同器官的组织内部及外部空间的水分中。另外,硝态氮的代谢也离不开水分[9]。 2.2.4 氮肥供应 大部分蔬菜为喜硝态氮作物,于是人们为追求高产而盲目追施硝态氮肥,而NO3-含量却随氮肥用量增加而不断升高,不能及时被还原。另一方面,施肥方法不当,基肥不足,追肥次数偏多,导致硝酸盐积累增加。 3 降低硝酸盐含量的控制途径和措施 综上所述,有关影响植物体内硝酸盐积累的因素是多方面的,作物之间的差异也十分明显,因此要有效降低硝酸盐的积累首先要分析研究对象所特有的影响因子,针对主要因子通过明确的调控措施,达到降低硝酸盐积累的目的。 3.1 施肥措施 蔬菜硝酸盐严重超标,除了与蔬菜的种类、品种、遗传特性不同有关外,一个重要影响因素是:施用化肥,超量施肥,重施氮肥,没有均衡的控制和调节土壤肥力。控制蔬菜硝酸盐过量残留的措施是,严格控制氮肥的施用量,少施化学氮肥,应以有机肥为主。因为有机肥矿化速度慢,不会导致硝酸盐在植株体内明显积累,并能提高蔬菜的产品质量和口感度[10]。 3.1.1 合理施用氮肥 ⑴搭配施用不同形态的氮肥 邱孝煊等报道,每公顷氮素用量450Kg,空心菜中硝酸盐含量,氯化铵<硫酸铵<尿素<碳酸氢铵<硝酸铵.施氯化铵的空心菜硝酸盐比其它化学氮肥低10%以上,这与氯化铵中的Cl-能抑制硝化作用有关。李海云等报道,铵态氮和硝态氮的比例不同影响硝酸盐的积累量,经多种蔬菜试验表明,NH4+-N所占比例越大,NO3-含量降低越明显。其原因在于NH4+被植物吸收后立即参加含氮有机物的形成,而NO3-则要先还原,后一过程需消耗额外能量并在相应酶系参与下进行。因此,施铵态氮肥可使蔬菜硝酸盐含量减低。朱祝军等研究的结果是,对不结球生长的营养液中,铵态氮和硝态氮浓度(mmol/L)比例以1:1为最佳。[11] ⑵适宜的氮肥施用量 氮素是植物生命活动的必需养分,且需要量在各元素中居首位。任祖金等报道,偏施和滥用氮肥,是造成蔬菜硝酸盐积累的重要原因,提出300Kg/hm2为氮肥用量的临界值。在保证产量的同时,适当降低氮肥施用量能降低硝酸盐的富集。 ⑶严格掌握氮肥的施用方法 氮肥要深施、早施。深施可以减少氮素挥发,延长供肥时间,提高氮肥利用率。早施则利于蔬菜植株早发快长,延长肥效,减少硝酸盐积累。还应根据蔬菜种类、栽培条件、气候条件等灵活施肥。无公害蔬菜生产过程中,其硝酸盐含量是不断变化的。据研究,随着氮肥追肥时间的推移,蔬菜体内的硝酸盐含量有逐渐减少的趋势。对蔬菜来讲,追肥的时间应安排在采收前30天,追肥的原则为“少量多次”[12]。 ⑷控制氮肥施用时间 研究结果表明,追氮后8天是蔬菜收获上市的安全始期,随着时间延长,硝酸盐累积具有明显下降趋势,至追氮后18天,蔬菜体内硝酸盐分别比始期下降21.9% ~34.7% 。因此,得出蔬菜“攻头控尾”的施氮技术模式[13]。 3.1.1有机肥无机肥配合施用 菜田施用有机肥是一项降低蔬菜硝酸盐积累,提高产品营养价值的有益的农业措施。这是因为生物降解有机质是个渐进过程,养分释放缓慢,适合于蔬菜对养分吸收;土壤中有机质能促进土壤反硝化过程,从而有效降低土壤中硝态氮浓度。和氮肥相比,施有机肥能降低蔬菜50% 的NO3-的积累量 。据此,要广辟肥料,确保蔬菜生产对有机肥的需求。但有机肥施用量过大,也会引起蔬菜中硝酸盐的大量积累,菜田有机肥施用量最大限量为60t·hm2。 化学氮肥与厩肥、土杂肥配合施用,能有效控制和降低蔬菜中的硝酸盐积累。通常无机氮与有机氮的比为l:1;氮、磷、钾三要素的比例,100天以内的短季节蔬菜为l:0.2:0.5,长季节蔬菜为l:O.5:0.6。[14] 3.1.2 推广测土配方施肥、平衡施肥技术 测土配方施肥,是控制蔬菜硝酸盐积累的重要措施之一。大量研究结果表明,氮肥施用量与蔬菜体内硝酸盐含量呈正相关,磷、钾肥的施用量则与之呈负相关。这是由于:钾在植物体内能促进蛋白质的合成,钾的浓度越高,促进作用越强,从而提高了氮的利用率,蔬菜中K含量每递增0.1% ,NO3-量下降33.O% ;磷是硝酸还原酶和亚硝酸还原酶的重要组成部分,参与NO3-的还原和同化。高祖明等指出,N、K比过大是造成叶菜NO3-积累的重要原因,且缺磷比增氮更易引起叶菜组织内NO3-积累。因此,在蔬菜生产上应大力推广测土配方施肥技术,做到缺什么补什么,缺多少补多少。达到平衡施肥。这样,不仅能降低蔬菜中硝酸盐的含量,而且增产效果十分显著[15]。 3.1.4 叶面喷施微肥 施用微量元素肥料,对于减少蔬菜中硝酸盐的积累有一定的效果。蔬菜收获前lO天,叶面喷施微肥,能提高产量和品质,收获前1天用草酸、甘氨酸等喷洒,可明显降低蔬菜中的硝酸盐含量。近年来的研究结果表明,叶面喷施钼、锰等微肥,对降低蔬菜硝酸盐积累有良好的效果。这是因为钼和锰元素在植物体内参与硝态氮的还原过程,钼是硝酸还原酶的组成部分,锰是多种代谢酶的活化剂。对蔬菜叶面喷施钼肥和锰肥,能激活蔬菜体内的硝酸还原酶,从而使蔬菜体内硝态氮的还原同化量超过其吸收量,降低蔬菜硝酸盐的含量。 叶菜类不能叶面施氮肥。叶面喷施直接与空气接触,铵离子易变成硝酸根离子被叶片吸收,硝酸盐积累增加,又不耐贮存[16]。 3.2 改善生态条件 3.2.1 改善光照条件,增加光照时间 保证正常光照,是硝酸盐在植物体内同化并降低其浓度的决定条件之一。露地和保护地条件下光照强度降低20% ,蔬菜硝酸盐含量增加150%; 强光照下可使菠菜的硝酸盐含量较之弱光照来得低。正常光照条件下,光合作用良好,植株生长量大,吸入的硝酸盐可被稀释而不致积累太多,同时还促进硝酸还原酶的合成,程高其活性,并为硝酸还原提供能量,因此有利于硝酸盐含量的下降[17]。 3.2.2 改善土壤水分供应状况 研究表明,土壤水分充足时,蔬菜的生长量可提高109.9%~174.8% ,而硝酸盐含量却降低19.4%~ 25.0%,硝酸盐还原酶活性也明显降低。因此,在蔬菜生产中应注意水分管理,避免由于缺水造成水分胁迫[17]。 在干旱情况下,蔬菜的硝酸还原酶的合成受阻,分解加快,硝态氮积累显著增加。因此,在收获前几天进行灌水,可使硝酸盐含量下降。 3.3 配合使用氮肥抑制剂 为降低和控制蔬菜硝酸盐的含量,目前国外普遍采用氮抑制剂来抑制土壤硝化细菌的活性,从而达到减少土壤和蔬菜中硝酸盐积累的目的。在现有的氮抑制剂中,使用效果较好的首推双氰胺(DCD)。在氮肥中,添加10~20%的双氰胺与单施尿素相比,可使青菜茎叶中的硝酸盐含量降低10~30%。将双氰铵与碳铵一起施用效果更佳,可使叶柄和叶片中的硝酸盐含量减少25~45%。[18] 因此,蔬菜在施用氮肥时,应按纯氮量的10~20%添加双氰胺,与化肥拌匀后施用,控制硝酸盐积累的效果最佳。 3.4 选育低富集硝酸盐的品种 由于硝酸盐积累存在遗传差异,所以选育低积累的品种被认为是控制蔬菜硝酸盐含量的有效方法之一,低硝酸盐含量已成为育种的1个重要目标。国外有育成硝酸盐富集力弱的菠菜新品种的报道,但国内目前还没有选育成功低积累的蔬菜品种。随着对蔬菜硝酸盐积累的遗传规律的进一步认识,特别是随着现代分子生物技术的发展,利用基因工程选育低富集硝酸盐品种必将成为重要的发展方向。 3.5 调整收获时期和时间 由于不同生长发育阶段的蔬菜硝酸盐含量不同,一些蔬菜生长前期大于后期,所以,适当晚收有利于降低蔬菜中的硝酸盐,降低幅度可达数倍甚至数十倍。另外,光照、温度等外部因素对蔬菜硝酸盐积累也有明显影响。因此,生产中应根据1d内温度和光照变化的节奏确定适宜的收获时间,同时应根据光、温等条件的季节变化以及蔬菜生长发育进程确定适宜的收获时期。[20] 4 存在的问题与展望 目前,蔬菜体内硝酸盐的积累问题已引起广大科研工作者的关注,而且在这一领域的研究已取得了一些成果,但是,尚缺乏控制效果好、简单易行的方法。一些控制硝酸盐积累的措施目前还很难用于生产实践,另外一些方法控制效果不太明显,还有一些方法或观点虽在理论上成立,但目前还没有取得应用成果。我国目前蔬菜生产条件及农民的科技水平,特别是目前国内生产者对产量的追求以及消费市场对供应量的要求决定了在短期内难以显著降低氮肥的施用量(氮肥是蔬菜体内硝酸盐的主要来源),因此,不降低氮素投人,如何控制蔬菜硝酸盐积累就成为一个重要研究课题。针对这一研究目标,从营养互作,水氮互作等营养生理以及代谢方面出发进行NO3-的转化的基础研究就显得非常必要。另外,由于蔬菜种类繁多,遗传基础及适宜生长条件、同化利用硝酸盐能力差异较大,所以,无论是关于硝酸盐积累过程的基础研究还是控制措施的探讨均要有明确针对性。 5 小结 综上所述,通过调整施肥措施、改善生态条件、使用抑制剂、选育低富集硝酸盐的蔬菜品种、调整收获时期和时间等,对减少蔬菜中硝酸盐累积量有很大的作用,应该对菜农加强宣传,采用合理的技术措施来减少蔬菜中硝酸盐累积,既使菜农节约肥料成本、增产增收,又减小对消费者的危害。

急急急急急~!!!!!关于苯加氢用阻聚剂的问题?

效验
和之至也
阻聚剂Polymerization Inhibitor橡胶进出口网 - 橡胶助剂列表1 阻聚剂及碘参与的活性自由基聚合和新均相引发剂CAN的研究 张鸿硕士 苏州大学 2006 32 高效甲醛阻聚剂的研制 刘魁 化学试剂 2006 23 毛细管气相色谱法分析丙烯腈中阻聚剂(MEHQ)的含量 惠希东 检验检疫科学 2006 14 阻聚剂对自由基聚合的活性化影响 常丽群 胶体与聚合物 2006 15 茂名乙烯装置脱丙烷塔用高效阻聚剂RIPP1461的研制与应用 孙晶磊 广东化工 2005 86 丁二烯抽提阻聚剂的研制 何玉莲硕士 大庆石油学院 2005 127 甲基丙烯酸甲酯中阻聚剂2, 4-二甲基-6-叔丁基苯酚的测定 刘兴富 辽宁化工 2004 78 HDPE辐照接枝AA与SSS体系阻聚剂用量对接枝率的影响 俎建华 辐射研究与辐射工艺学报 2004 49 丁二烯抽提装置阻聚剂的研制及应用 包静严 化工科技市场 2004 410 高效液相色谱法分析甲基丙烯酰氧乙基三甲基氯化铵中的阻聚剂 李素真 山东化工 2004 311 国产阻聚剂BL-628在天津乙烯装置上的应用 吴铁锁 石化技术 2004 212 甲醛阻聚剂聚乙烯醇缩甲醛的合成 王岩 丹东纺专学报 2004 213 新型阻聚剂JD-A249在丁二烯抽提装置上的应用 李海强 齐鲁石油化工 2004 214 一步催化法合成新型阻聚剂DNBP 刘春媚 吉林化工学院学报 2004 215 阻聚剂HK-17A在焦化粗苯加氢中的应用 王力 河北化工 2004 116 仿丙烯腈生产过程研究ZC-01阻聚剂的阻聚效果 金耀琴 石化技术与应用 2004 117 碳五馏分中微量阻聚剂二乙基羟胺的气相色谱测定法 徐秀红 分析科学学报 2003 518 乙烯工艺阻聚剂在选择与使用过程中应注意的问题 盖月庭 乙烯工业 2003 419 阻聚剂脱除方法对丙烯酸钠聚合的影响 刘继泉 青岛科技大学学报(自然科学版) 2003 420 对新型丁二烯阻聚剂的剖析研究 肖占敏 炼油与化工 2003 321 GC/MS法测定苯乙烯中阻聚剂对叔丁基邻苯二酚的含量 陈朝方 检验检疫科学 2002 622 阻聚剂性能动力学评定方法的改进 姜维硕士 石油化工科学研究院 2002 523 丙烯酰胺提纯过程中阻聚剂的有效控制 杨涛 江西化工 2002 324 气相色谱-质谱联用测定苯乙烯中的阻聚剂对叔丁基邻苯二酚 陈朝方 色谱 2002 325 苯乙烯中阻聚剂DNPC快速测定方法的建立 顾桂珍 广东化工 2001 526 国产阻聚剂RIPP-1403在燕山乙烯装置上的应用 李光松 石化技术 2001 327 阻聚剂的存在对碳氢燃料热分解动力学的影响 郭晓亚 化工时刊 2001 228 新型苯乙烯阻聚剂的性能评价与工业应用 靳由顺 山西化工 2001 229 氮氧自由基光阻聚剂的研究 严宝珍 北京化工大学学报 2001 230 脱丙烷塔用高效阻聚剂RIPP1461的研制与应用 邹余敏 石油化工 2001 1231 从裂解汽油中萃取蒸馏分离苯乙烯的溶剂及阻聚剂的评选 田龙胜 石油炼制与化工 2001 1132 新型高效阻聚剂DNBP合成 杜长海 吉林工学院学报(自然科学版) 2000 433 新型阻聚剂EC3144A在乙烯生产中的应用 商平 黑龙江石油化工 2000 434 苯乙烯精馏阻聚剂的研究进展 菅秀君 精细石油化工 2000 335 高效阻聚剂DNBP合成新工艺 林艳红 吉林工学院学报(自然科学版) 2000 136 RIPP-1461乙烯高效阻聚剂工业试验 洪庆尧 石油炼制与化工 1999 737 阻聚剂TBC在亚硫酸盐防腐蚀中的作用 魏刚 化工机械 1999 438 阻聚剂TBC对亚硫酸盐自动氧化的阻滞作用 熊蓉春 化工机械 1999 339 高效阻聚剂RIPP-1461的应用 吴启龙 乙烯工业 1999 240 乙烯工艺阻聚剂的研制及工业应用 洪庆尧 乙烯工业 1999 241 几种常用酚类阻聚剂的高效液相色谱法分析 李素真 山东化工 1998 542 RIPP-1402阻聚剂工业试验及应用 洪庆尧 石油化工 1998 543 甲醛阻聚剂的制备 陈瑞兰 化学试剂 1998 544 RIPP-1402阻聚剂的研究 洪庆尧 石油化工 1998 445 浅谈丁苯橡胶装置丁二烯脱阻聚剂系统夹带问题 任军 合成橡胶工业 1998 446 阻聚剂2, 6-二硝基对甲酚的合成研究 李德鹏 化学工程师 1997 347 过氧化物胺和阻聚剂含量对树脂固化和性能的影响 王军 现代口腔医学杂志 1997 148 盘锦乙烯装置C_3阻聚剂系统的改造 徐海琴 乙烯工业 1996 449 碳五萃取精馏阻聚剂适应性研究 赵全聚 金山油化纤 1996 450 甲基丙烯酸β-羟乙酯合成及其蒸馏阻聚剂研究 赵慈义 武汉化工学院学报 1995 451 苯乙烯精馏过程新型高效阻聚剂调研 何连生 石化技术 1995 352 胺和酚类及其复合阻聚剂在乙烯装置中的应用 张继朋 石油炼制与化工 1994 953 乙烯系自由基聚合阻聚效应(XⅧ)——哌啶氮氧自由基氨基硫脲化合物与通用阻聚剂混合对MMA阻聚效应研究 张自义 高等学校化学学报 1994 354 BR生产回收溶剂油中微量阻聚剂TBC的测定 李远芬 合成橡胶工业 1991 155 新型阻聚剂在丙烯腈成品塔上的工业试验 韩国梁 石化技术与应用 1990 356 丙烯腈阻聚剂简介 韩国梁 石化技术与应用 1990 157 气相色谱法测定C_5馏分中微量阻聚剂二乙羟胺 李兆琳 合成橡胶工业 1989 658 液相色谱法测定MMA中的痕量阻聚剂2, 2, 6, 6-四甲基-4-羟基哌啶-1-氧自由基 段志兴 合成橡胶工业 1989 559 高效液相色谱法定量分析微量阻聚剂硫代二苯基胺 迟久春 石油与天然气化工 1989 460 阻聚剂在乳液聚合中的行为(Ⅱ)——第Ⅰ类动力学体系?〈〈 0.5) A.Penlidis 化工学报 1989 461 阻聚剂在乳液聚合中的行为(Ⅰ)——第Ⅱ类动力学体系(?=0.5) 霍炳培 化工学报 1989 462 羟乙基丙烯酸酯阻聚剂的选择 刘同保 化学世界 1988 663 新型丙烯腈阻聚剂在丙烯腈系统工业试验 韩国梁 石化技术与应用 1988 464 防止高效阻聚剂TMHPO使丙烯酸系单体着色的方法 张自义 化学世界 1987 565 共轭双烯烃用新型阻聚剂 林基兰 合成橡胶工业 1987 566 新型丙烯腈阻聚剂工业试验 韩国梁 石化技术与应用 1987 367 HK-14用作轻苯阻聚剂 王惠良 化学世界 1986 468 苯乙烯精馏阻聚剂的应用技术 何仕新 石化技术与应用 1986 269 苯乙烯的高温型阻聚剂 张自义 化学世界 1985 870 苯乙烯新型高效阻聚剂Q的工业应用 蔡万有 合成橡胶工业 1985 571 低醇甲醛阻聚剂阻聚试验 冯小锁 石化技术与应用 1985 272 丙烯酸酯、甲基丙烯酸酯类单体中混合阻聚剂分析 张兰芬 涂料工业 1985 173 氯丁二烯温和阻聚剂的研究 庞义 山西化工 1984 274 甲基丙烯酸阻聚剂的研究——非金属盐新阻聚剂-4-羟基-2.2.6.6-四甲基哌啶-1-氧自由基(TMPO~·)的考察 刘善政 河南科学 1984 175 苯乙烯高温阻聚剂的评选 何仕新 合成橡胶工业 1984 176 精馏异戊二烯阻聚剂的研究 张自义 兰州大学学报(自然科学版) 1983 S177 丙烯腈阻聚剂的研究 张自义 合成橡胶工业 1983 478 低醇甲醛阻聚剂 黄绍和 现代化工 1983 179 影响甲醛阻聚剂质量因素的讨论 顾敬瑜 安徽化工 1982 280 制备甲基丙烯酸的高效阻聚剂 潘治平 化学世界 1980 881 聚氨酯预聚物制造中的有效阻聚剂—正磷酸 何愫明 涂料工业 1980 682 分离异戊二烯过程中的阻聚剂 张镜澄 合成橡胶工业 1980 583 高效阻聚剂对叔丁基邻苯二酚 合成橡胶工业 1980 484 阻聚剂的评选方法 张自义 合成橡胶工业 1980 385 甲醛阻聚剂的试制 安徽化工 1980 186 裂解C_5馏份阻聚剂的研究 张自义 兰州大学学报(自然科学版) 1979 387 异戊二烯阻聚剂的再研究 合成橡胶工业 1978 488 脱C_3塔釜液阻聚剂的评选 合成橡胶工业 1978 389 氯丁二烯高效阻聚剂的研究 合成橡胶工业 1978 390 阻聚剂在接枝共聚中抑制均聚的作用 陈锦甫 高分子学报 1978 191 略谈二烯烃阻聚剂类型 张自义 兰州大学学报(自然科学版) 1977 392 异戊二烯阻聚剂的研究 兰州大学学报(自然科学版) 1976 393 高效阻聚剂——对-叔丁基邻苯二酚(TBC) 塑料工业 1975 294 丙烯腈阻聚剂的初步研究和应用 合成纤维 1975 1参考资料:http://www.rubberimpex.com/info/RubberChemicals/PolymerizationInhibitorInfo.htm如果你想买可以在我QQ545254712里聊

急急急急急~!!!!!关于苯加氢用阻聚剂的问题?

目大不睹
红梅阁
阻聚剂Polymerization Inhibitor橡胶进出口网 - 橡胶助剂列表1 阻聚剂及碘参与的活性自由基聚合和新均相引发剂CAN的研究 张鸿硕士 苏州大学 2006 32 高效甲醛阻聚剂的研制 刘魁 化学试剂 2006 23 毛细管气相色谱法分析丙烯腈中阻聚剂(MEHQ)的含量 惠希东 检验检疫科学 2006 14 阻聚剂对自由基聚合的活性化影响 常丽群 胶体与聚合物 2006 15 茂名乙烯装置脱丙烷塔用高效阻聚剂RIPP1461的研制与应用 孙晶磊 广东化工 2005 86 丁二烯抽提阻聚剂的研制 何玉莲硕士 大庆石油学院 2005 127 甲基丙烯酸甲酯中阻聚剂2, 4-二甲基-6-叔丁基苯酚的测定 刘兴富 辽宁化工 2004 78 HDPE辐照接枝AA与SSS体系阻聚剂用量对接枝率的影响 俎建华 辐射研究与辐射工艺学报 2004 49 丁二烯抽提装置阻聚剂的研制及应用 包静严 化工科技市场 2004 410 高效液相色谱法分析甲基丙烯酰氧乙基三甲基氯化铵中的阻聚剂 李素真 山东化工 2004 311 国产阻聚剂BL-628在天津乙烯装置上的应用 吴铁锁 石化技术 2004 212 甲醛阻聚剂聚乙烯醇缩甲醛的合成 王岩 丹东纺专学报 2004 213 新型阻聚剂JD-A249在丁二烯抽提装置上的应用 李海强 齐鲁石油化工 2004 214 一步催化法合成新型阻聚剂DNBP 刘春媚 吉林化工学院学报 2004 215 阻聚剂HK-17A在焦化粗苯加氢中的应用 王力 河北化工 2004 116 仿丙烯腈生产过程研究ZC-01阻聚剂的阻聚效果 金耀琴 石化技术与应用 2004 117 碳五馏分中微量阻聚剂二乙基羟胺的气相色谱测定法 徐秀红 分析科学学报 2003 518 乙烯工艺阻聚剂在选择与使用过程中应注意的问题 盖月庭 乙烯工业 2003 419 阻聚剂脱除方法对丙烯酸钠聚合的影响 刘继泉 青岛科技大学学报(自然科学版) 2003 420 对新型丁二烯阻聚剂的剖析研究 肖占敏 炼油与化工 2003 321 GC/MS法测定苯乙烯中阻聚剂对叔丁基邻苯二酚的含量 陈朝方 检验检疫科学 2002 622 阻聚剂性能动力学评定方法的改进 姜维硕士 石油化工科学研究院 2002 523 丙烯酰胺提纯过程中阻聚剂的有效控制 杨涛 江西化工 2002 324 气相色谱-质谱联用测定苯乙烯中的阻聚剂对叔丁基邻苯二酚 陈朝方 色谱 2002 325 苯乙烯中阻聚剂DNPC快速测定方法的建立 顾桂珍 广东化工 2001 526 国产阻聚剂RIPP-1403在燕山乙烯装置上的应用 李光松 石化技术 2001 327 阻聚剂的存在对碳氢燃料热分解动力学的影响 郭晓亚 化工时刊 2001 228 新型苯乙烯阻聚剂的性能评价与工业应用 靳由顺 山西化工 2001 229 氮氧自由基光阻聚剂的研究 严宝珍 北京化工大学学报 2001 230 脱丙烷塔用高效阻聚剂RIPP1461的研制与应用 邹余敏 石油化工 2001 1231 从裂解汽油中萃取蒸馏分离苯乙烯的溶剂及阻聚剂的评选 田龙胜 石油炼制与化工 2001 1132 新型高效阻聚剂DNBP合成 杜长海 吉林工学院学报(自然科学版) 2000 433 新型阻聚剂EC3144A在乙烯生产中的应用 商平 黑龙江石油化工 2000 434 苯乙烯精馏阻聚剂的研究进展 菅秀君 精细石油化工 2000 335 高效阻聚剂DNBP合成新工艺 林艳红 吉林工学院学报(自然科学版) 2000 136 RIPP-1461乙烯高效阻聚剂工业试验 洪庆尧 石油炼制与化工 1999 737 阻聚剂TBC在亚硫酸盐防腐蚀中的作用 魏刚 化工机械 1999 438 阻聚剂TBC对亚硫酸盐自动氧化的阻滞作用 熊蓉春 化工机械 1999 339 高效阻聚剂RIPP-1461的应用 吴启龙 乙烯工业 1999 240 乙烯工艺阻聚剂的研制及工业应用 洪庆尧 乙烯工业 1999 241 几种常用酚类阻聚剂的高效液相色谱法分析 李素真 山东化工 1998 542 RIPP-1402阻聚剂工业试验及应用 洪庆尧 石油化工 1998 543 甲醛阻聚剂的制备 陈瑞兰 化学试剂 1998 544 RIPP-1402阻聚剂的研究 洪庆尧 石油化工 1998 445 浅谈丁苯橡胶装置丁二烯脱阻聚剂系统夹带问题 任军 合成橡胶工业 1998 446 阻聚剂2, 6-二硝基对甲酚的合成研究 李德鹏 化学工程师 1997 347 过氧化物胺和阻聚剂含量对树脂固化和性能的影响 王军 现代口腔医学杂志 1997 148 盘锦乙烯装置C_3阻聚剂系统的改造 徐海琴 乙烯工业 1996 449 碳五萃取精馏阻聚剂适应性研究 赵全聚 金山油化纤 1996 450 甲基丙烯酸β-羟乙酯合成及其蒸馏阻聚剂研究 赵慈义 武汉化工学院学报 1995 451 苯乙烯精馏过程新型高效阻聚剂调研 何连生 石化技术 1995 352 胺和酚类及其复合阻聚剂在乙烯装置中的应用 张继朋 石油炼制与化工 1994 953 乙烯系自由基聚合阻聚效应(XⅧ)——哌啶氮氧自由基氨基硫脲化合物与通用阻聚剂混合对MMA阻聚效应研究 张自义 高等学校化学学报 1994 354 BR生产回收溶剂油中微量阻聚剂TBC的测定 李远芬 合成橡胶工业 1991 155 新型阻聚剂在丙烯腈成品塔上的工业试验 韩国梁 石化技术与应用 1990 356 丙烯腈阻聚剂简介 韩国梁 石化技术与应用 1990 157 气相色谱法测定C_5馏分中微量阻聚剂二乙羟胺 李兆琳 合成橡胶工业 1989 658 液相色谱法测定MMA中的痕量阻聚剂2, 2, 6, 6-四甲基-4-羟基哌啶-1-氧自由基 段志兴 合成橡胶工业 1989 559 高效液相色谱法定量分析微量阻聚剂硫代二苯基胺 迟久春 石油与天然气化工 1989 460 阻聚剂在乳液聚合中的行为(Ⅱ)——第Ⅰ类动力学体系?〈〈 0.5) A.Penlidis 化工学报 1989 461 阻聚剂在乳液聚合中的行为(Ⅰ)——第Ⅱ类动力学体系(?=0.5) 霍炳培 化工学报 1989 462 羟乙基丙烯酸酯阻聚剂的选择 刘同保 化学世界 1988 663 新型丙烯腈阻聚剂在丙烯腈系统工业试验 韩国梁 石化技术与应用 1988 464 防止高效阻聚剂TMHPO使丙烯酸系单体着色的方法 张自义 化学世界 1987 565 共轭双烯烃用新型阻聚剂 林基兰 合成橡胶工业 1987 566 新型丙烯腈阻聚剂工业试验 韩国梁 石化技术与应用 1987 367 HK-14用作轻苯阻聚剂 王惠良 化学世界 1986 468 苯乙烯精馏阻聚剂的应用技术 何仕新 石化技术与应用 1986 269 苯乙烯的高温型阻聚剂 张自义 化学世界 1985 870 苯乙烯新型高效阻聚剂Q的工业应用 蔡万有 合成橡胶工业 1985 571 低醇甲醛阻聚剂阻聚试验 冯小锁 石化技术与应用 1985 272 丙烯酸酯、甲基丙烯酸酯类单体中混合阻聚剂分析 张兰芬 涂料工业 1985 173 氯丁二烯温和阻聚剂的研究 庞义 山西化工 1984 274 甲基丙烯酸阻聚剂的研究——非金属盐新阻聚剂-4-羟基-2.2.6.6-四甲基哌啶-1-氧自由基(TMPO~·)的考察 刘善政 河南科学 1984 175 苯乙烯高温阻聚剂的评选 何仕新 合成橡胶工业 1984 176 精馏异戊二烯阻聚剂的研究 张自义 兰州大学学报(自然科学版) 1983 S177 丙烯腈阻聚剂的研究 张自义 合成橡胶工业 1983 478 低醇甲醛阻聚剂 黄绍和 现代化工 1983 179 影响甲醛阻聚剂质量因素的讨论 顾敬瑜 安徽化工 1982 280 制备甲基丙烯酸的高效阻聚剂 潘治平 化学世界 1980 881 聚氨酯预聚物制造中的有效阻聚剂—正磷酸 何愫明 涂料工业 1980 682 分离异戊二烯过程中的阻聚剂 张镜澄 合成橡胶工业 1980 583 高效阻聚剂对叔丁基邻苯二酚 合成橡胶工业 1980 484 阻聚剂的评选方法 张自义 合成橡胶工业 1980 385 甲醛阻聚剂的试制 安徽化工 1980 186 裂解C_5馏份阻聚剂的研究 张自义 兰州大学学报(自然科学版) 1979 387 异戊二烯阻聚剂的再研究 合成橡胶工业 1978 488 脱C_3塔釜液阻聚剂的评选 合成橡胶工业 1978 389 氯丁二烯高效阻聚剂的研究 合成橡胶工业 1978 390 阻聚剂在接枝共聚中抑制均聚的作用 陈锦甫 高分子学报 1978 191 略谈二烯烃阻聚剂类型 张自义 兰州大学学报(自然科学版) 1977 392 异戊二烯阻聚剂的研究 兰州大学学报(自然科学版) 1976 393 高效阻聚剂——对-叔丁基邻苯二酚(TBC) 塑料工业 1975 294 丙烯腈阻聚剂的初步研究和应用 合成纤维 1975 1参考资料:http://www.rubberimpex.com/info/RubberChemicals/PolymerizationInhibitorInfo.htm如果你想买可以在我QQ545254712里聊