欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

金融量化策略研究员的收入怎样?这一行有前景吗?

艾曼纽
乃愤吾心
这个职位要做好很难.不啻于创新发明,犹如西蒙斯的大奖章基金.因为你要发掘可操作的交易模型,要么从历史找规律,要么你统计超牛直接从价格中发现规律.而这只是第一步,有了模型还的有市场来交易,国内目前只有股指期货和融券可以做空.目前业内还是主观判断为主,公募基金所谓的量化只不过是幌子,无非是选股方面用些模型,就是用了点统计工具,真正的量化交易,无论从发掘交易机会还是资产配置,乃至最后的交易下单和风险控制都是计算机来完成的,国内还差得很远.只是个噱头.定量与定性孰优孰劣难说,就如中医和西医一样,不管怎样西医还是主流,计算机量化也是以后的发展方向.

量化策略一般用什么平台回测?分别有什么优劣势

大混乱
兰梅记
盈时量化策略回测平台,不会编程也能玩转量化。盈时“策略机器人”集策略智能生成、策略评估、筛选优化、批量生成等功能于一体的交互式策略生成平台。平台以计算机智能生成算法为核心,使用了机器学习、模式识别、统计学、可视化技术等人工智能技术,包含策略构建模块、混编计算模块、策略绩效优化模块等组件,在策略优化方面使用了高效的遗传编程与NSGA-II等算法,进而充分利用CPU多核心性能,实现多进程同步高效生成策略。语言:Python适用人群:期货投资者(有无编程基础都可)数据库:期货回测用时:需要排队分钟记支持的功能:支持将策略使用在交易开拓者的平台,属于实盘交易。策略给出建议,但需要自己手动确定进行买卖。自动生成策略原理与简介:通过设置参数,运用机器学习的方法,一键生成源码策略。备注:国内首个利用深度学习的人工智能量化平台,不懂编程也能做量化。盈时,专注于为客户提供高品质的量化交易技术咨询服务和领先的量化交易产品,是一家从事金融数据分析、金融软件开发、程序化交易算法与交易策略研究等业务的科技公司。

量化交易主要有哪些经典的策略

觉照
而有所矜
量化选股之多因子选股模型 量化择时--双均线(MA)、DMA、TRIX、MACD择时 量化择时--PE择时 还有趋势型,网格型,剥头皮,概率法则,高频交易,神经网络,基因算法

量化策略,国内哪些公司做量化策略?都怎么样?

给数以敏
满天飞
国内量化方兴,忽然冉冉升起了数个量化平台,看出来都是走美国华尔街quantopian的模式,先从工具下手,到社区到众筹策略hedge fund。说到工具不得不提 Ricequant ,他是和其他几家量化平台对比而言,我观察走到最前面的,也是相对完善的两个平台,尤其是他的工具,体验还是非常好的。当然每家公司都有优劣势,一边很想拿探讨下他们的优劣,一方面又很希望两者都能良好发展,给大家提供更好的东西。我是业内人士,所以比较关注。话说最近还出现了和Ricequant 长得比较像的joinquant,深深八卦下,发现joinquant创始人叫高斯蒙? 以前是做O2O服务平台出生的?简直也是像素级别拷贝~~~~~略醉本回答被提问者和网友采纳

什么是量化交易以及量化的主要策略 什么是阿尔法策略

柏拉图
夏雨
股指期货与个股对冲博取正阿尔法策略、商品期货与现货对冲策略、跨期对冲策略、跨市场对冲、跨品种对冲、统计套利、股票与期权对冲套利、可转债与正股对冲套利、期权跨式对冲套利、事件驱动型对冲套利、ETF与成分股对冲套利,国债期货与国债主力品种现货的套利对冲等等,以后随着中国金融产品的丰富,会有越来越多的包括利率、外汇产品在内的量化追踪套利模式。

量化交易主要有哪些好的策略

鬼吃鬼
使民心竞
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。  量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。  量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。  量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。  统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。  用于量化研究的软件:我采用的是免费的大型数据库mysql,asp网络编程语言,以及可以设置成网络服务器的旗舰版win7操作系统。

如何设计出一个比较成功量化策略

冰上乐
爱力
如何设计出一个比较成功量化策略 设计量化交易策略其实就是一个想法+验证的过程。一、想法的来源:大概有以下几个思路:1、金融理论。金融理论里资产定价的核心就是无套利原则。这里说的套利既包括通常意义的统计套利,也包括更宽泛的概念比如相同的预期收益率下,卖出风险较大的组合,买入风险较小的组合,也是一种套利。因此,多因子模型就是一种套利模型,承担相同风险下,寻找收益率最高的因子组合,从而得到对冲后的alpha。由于这部分是比较学院派的做法,因此推荐大家看下知名的教科书,比如博迪的《投资学》。2、符合逻辑的直觉比如从内部人获取信息的角度,大股东以及管理层增持意味着对本公司发展有信心,因此预期公司业绩向好。比如破增发价且距解禁日在一段时间内,那么上市公司可能有维持股价的动力。再比如通过分析与个股相关的新闻,从而能够判断市场对该股的情绪、态度等。这种类型的策略的关键是想法要符合逻辑,符合直觉。3、一些经典的方法比如海龟策略,al thrust,羊驼选股、二八轮动等等。可以借鉴一下这些经典策略的思路,不过要注意一下这些策略在今天还是否有效。二、验证过程:1、 目测观察这个方法主要适用上述的第二种方法。比如大股东增持,我们可以先在交易软件中,寻找到大股东增持的个股及发生的时间点,然后观察一下之后的走势,是不是和我们的逻辑一样。2、 回测这部分主要是用历史数据对上述想法进行验证,也包括调参数等。3、 测试稳定性在回测中,我们通常会反复调整参数,让策略达到理想的表现,但这样往往会导致过拟合。一中排除方法是将参数稍微做些变动,观察策略的表现。比如原策略是每月1日调仓,我们可以改为每月3日调仓,然后观察一下结果,如果策略差距较大,那么原策略就很可能是过拟合。另外持仓数量也值得注意。与基本面分析需要深入个股层面不同,量化策略并不对个股基本面进行深度研究,而是通过分散化降低个股层面的异质风险。因此如果一个策略平均持仓很少(10只一下)那么策略的表现可能只是某一只个股表现好,这是可能采取一些验证方法,比如原来选股是选排名前10,那么可以换成排名10-20,如果差距较大,那么说明策略可能只是运气好。

主流量化平台在量化策略中提供的风险模型一般有哪些?

情莫若率
小拳王
国内的,优矿有提供风险模型的接口,其他的好像没有吧。优矿风险模型共提供了以下9个数据接口:因子暴露数据因子收益数据特质收益数据风险因子协方差矩阵表(日级别)风险因子协方差矩阵表(short类型)风险因子协方差矩阵表(long类型)特质风险表(day类型)特质风险表(short类型)特质风险表(long类型)

量化分析是什么意思

阖辟
任曙
量化分析就是将一些不具体,模糊的因素用具体的数据来表示,从而达到分析比较的目的。量化分析可以帮助我们更加方便和直观地衡量风险和收益,但需要强调指出的是,美国华尔街顶级量化金融大师、哥伦比亚大学著名教授伊曼纽尔·德曼,在《数学建模如何诱骗了华尔街》一文中,毫无忌讳地承认:我们根本不可能(通过数理分析方法)发明出一个能够预测股票价格将会如何变化的模型;如果我们相信人类行为可完全遵守数学法则,从而把有着诸多限制的模型与理论相混淆的话,其结果肯定会是一场灾难。扩展资料:量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。量化分析法将对通过定性风险分析排出优先顺序的风险进行量化分析。尽管有经验的风险经理有时在风险识别之后直接进行定量分析,但定量风险分析一般在定性风险分析之后进行。定量风险分析一般应当在确定风险应对计划时再次进行,以确定项目总风险是否已经减少到满意。参考资料来源:百度百科-量化分析