欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2020考研复试都考什么内容?

斯干
荣辱
考研复试都考什么?相信很多应届生对这些还不是很了解,研究生复试究竟都考哪些呢?一般来说会分为:笔试和面试一、综合面试、英语听说、专业课笔试三者权重复试成绩一般来说占总成绩的30%~50%,每个学校都不同,但都在这个区间浮动。值得注意的是,招生单位有一票否决权,只要复试不合格,初试再牛都可以不要你的。所以大家一定要认真对待复试!考研复试的内容都由学校自己决定,但主要都包括英语听说能力测试、专业课笔试和综合面试这三个方面。最终的复试成绩和大家计算大学的平均分一样,需要加权平均一下。这里给大家提供一个公式:复试成绩=专业课笔试成绩×笔试权重+面试成绩×面试权重+外语听说能力成绩×外语权重。三者之间的权重:外语听说能力测试的权重为10%,笔试和面试的权重是学校自己决定的,一般是面试占30%,也会有部分学校面试占50%。在这里提醒各位考生一定要需要密切关注报考院校信息,了解具体的比重,有侧重的准备。二、英语听说能力准备英语听力部分,大多数学校都以四六级、托福雅思等现有的重要考试作为参考标准,不知道如何准备听力的同学可以多听听这些考试的听力部分。对口语的考查,各个学校各不相同。有的学校制定了非常详细的标准和流程,甚至规定了每个老师发问的方式和时间;有的只是面试老师的自由发挥,成绩也基本上由面试老师主观判定。不管面试严不严格,大家都要认真准备这几个问题:一是自我介绍,二是作好用英语回答专业类问题的准备,平时就注重对专业词汇的积累。复试专业面试的形式都有什么样的?复试专业课的面试形式有一下几种方式:(1)学员在整个复试现场中,专业课面试是导师问专业课问题,学生进行回答(2)学生在进入面试现场后,直接抽题,一般情况时允许抽2--3道题,允许学生选择性答1--2道题。(3)个别院校单独设定专业课面试,学生在整个面试过程中,都是在回答老师的专业课问题。(4)个别专业的面试形式是无领导小组讨论式考查专业课问题,同时考了专业课问题,同时也考查了学生的能力,主要专业有金融类、法律类。(5)专业课实践操作形式。个别专业是要进行专业实操演练的,多以工科、艺术类专业为主,考查学生知识掌握程度。所以同学们要根据不同的面试形式着手准备。希望能帮到您!

考研数二具体考什么?

四毋
不冯其子
2011考研数学大纲内容 数二一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 考试要求1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

考研初试的基础英语考哪些题型

虽少
枣流
试题分三部分,共52题,包括英语知识运用、阅读理解和写作。  第一部分 英语知识运用  该部分不仅考查考生对不同语境中规范的语言要素(包括词汇、表达方式和结构)的掌握程度,而且还考查考生对语段特征(如连贯性和一致性等)的辨识能力等。共20小题,每小题0.5分,共10分。  在一篇240~280词的文章中留出20个空白,要求考生从每题给出的4个选项中选出最佳答案,使补全后的文章意思通顺、前后连贯、结构完整。考生在答题卡1上作答。  第二部分 阅读理解  该部分由A、B、C三节组成,考查考生理解书面英语的能力。共30小题,每小题2分,共60分。  A节(20小题):主要考查考生理解主旨要义、具体信息、概念性含义,进行有关的判断、推理和引申,根据上下文推测生词的词义等能力。要求考生根据所提供的4篇(总长度约为1 600词)文章的内容,从每题所给出的4个选项中选出最佳答案。考生在答题卡1上作答。  B节(5小题):主要考查考生对诸如连贯性、一致性等语段特征以及文章结构的理解。本部分有3种备选题型。每次考试从这3种备选题型中选择一种进行考查。考生在答题卡1上作答。  备选题型有:  1)本部分的内容是一篇总长度为500~600词的文章,其中有5段空白,文章后有6~7段文字。要求考生根据文章内容从这6~7段文字中选择能分别放进文章中5个空白处的5段。  2)在一篇长度约500~600词的文章中,各段落的原有顺序已被打乱。要求考生根据文章的内容和结构将所列段落(7~8个)重新排序,其中有2~3个段落在文章中的位置已经给出。  3)在一篇长度约500词的文章前或后有6~7段文字或6~7个概括句或小标题。这些文字或标题分别是对文章中某一部分的概括、阐述或举例。要求考生根据文章内容,从这6~7个选项中选出最恰当的5段文字或5个标题填入文章的空白处。  C节(5小题)*:主要考查考生准确理解概念或结构较复杂的英语文字材料的能力。要求考生阅读一篇约400词的文章,并将其中5个画线部分(约150词)译成汉语,要求译文准确、完整、通顺。考生在答题卡2上作答。阅读,完形填空,新题型,翻译,大作文,小作文共6个题型,100分。阅读20题40分,完版形20题,10分,新题权型5题10分,翻译5题10分,大作文1题20分,小作文1题10分。所以考研英语是70%阅读加30%作文本回答被提问者和网友采纳

考研数学3具体包括哪些内容?希望回答得详细点。谢谢。

勃朗特
凄然似秋
2008年数学三考试大纲数 学 三考试科目 微积3236373132分、线性代数、概率论与数理统计微 积 分一、函数、极限、连续 考试内容 函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、隐函数、反函数、分段函数和隐函数基本初等函数的性质及图形 初等函数函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小和无穷大的概念及关系 无穷小的性质及无穷小的比较极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:, 函数连续的概念 函数间断点的类型 初等函数的连续性闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,理解初等函数的概念. 5.了解数列极限和函数极限(包括左、右极限)的概念. 6.理解无穷小的概念和基本性质,掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系. 7.了解极限的性质与极限存在的两个准则,掌握极限四则运[wiki]算法[/wiki]则,会应用两个重要极限. 8.理解函数连续性的概念(含左连续与右连续), 会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值与最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和经济意义函数的可导性与连续性之间的关系 平面曲线的切线与法线导数和微分的四则运算 基本初等函数的导数复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式不变性微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值函数图形的凹凸性、拐点及渐近线 函数图形的描绘函数的最大值与最小值 考试要求 1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线[wiki]方程[/wiki]和法线方程. 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导法. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解泰勒(Taylor)定理、了解柯西(Cauchy)中值定理,掌握这四个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法,了解函数极值的概念掌握函数极值、最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数,当 时, 的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点和渐近线. 9.会描绘简单函数的图形. 三、一元函数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质基本积分公式 定积分的概念和基本性质定积分中值定理积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法和分部积分法 反常(广义)积分积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握不定积分的换元积分法与分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用题. 4.了解反常积分的概念,会计算反常积分. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性的概念有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算无界区域上简单的广义二重积分 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会用多元隐函数的偏导数. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决某些简单的应用问题. 5.了解二重积分的概念与基本性质,掌握二重积分的计算方法([wiki]直角[/wiki]坐标、极坐标),了解无界区域上较简单的广义二重积分并会计算. 五、无穷级数 考试内容 常数项级数收敛与发散的概念收敛级数的和的概念 级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性 正项级数收敛性的判别任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区问(指开区间)和收敛域 幂级数的和函数 幂级数在收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.掌握级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和. 6"掌握 、 、 、 及的麦克劳林(Maclaurin)展开式,会用它们将简单函数间接展开成幂级数. 六、常微分方程与差分方程 考试内容 微分方程的概念变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解 一阶常系数线性差分方程微分方程与差分方程的简单应用 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性微分方程.4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.掌握一阶常系数线性差分方程的求解方法. 7.会用微分方程和差分方程求解简单的经济应用问题.Back线 性 代 数一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理考试要求 1.理解行列式的概念,掌握行列式的性质.2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂方阵乘积的行列式矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵矩阵的初等变换 初等矩阵 矩阵的秩矩阵的等价 分块矩阵及其运算 考试要求 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,理解对称矩阵、反对称矩阵及正交矩阵等的定义和性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵的乘积的行列式的性质. 3.理解逆矩阵的概念、掌握逆矩阵的性以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性元关 向量组的极大线性元关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大无关组的概念,会求向量组的极大无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组.2. 掌握非齐次线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组的结构及通解的概念.5. 掌握用初等行变换求解线性方程组的方法. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质. 六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩惯性定理 二次型的标准形和规范形正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念. 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会甩正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.Back概 率 论 与 数 理 统 计一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复事件 考试要求 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算. 2. 理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法、乘法公式、全概率公式及贝叶斯(Bayes)公式等. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 二、随机变量及其分布 考试内容 随机变量 随机变量的分布函数及其性质 离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求 1.理解随机变量的概念;理解分布函数的概念及性质;会计算与随机变量有关的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布 及其应用.3. 理解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布、指数分布及其应用,其中参数为 的指数分布 的密度函数为5.会求随机变量函数的分布.三、多维随机变量的分布考试内容 多维随机变量及其分布函数 二维离散型随机变量概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度 边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度.掌握二维随机变量的边缘概率分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布;会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征 考试内容 随机变量的[wiki]数学[/wiki]期望(均值)、方差、标准差及其性质随机变量函数的数学期望 切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征. 2.会随机变量函数的数学期望. 3.掌握切比雪夫不等式. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyhev)大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求 1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为: .2.了解产生 变量、 变量和 变量的典型模型;理解标准正态分布、 分布、分布和 分布的分位数,会查相应的数值表.3.掌握正态总体的抽样分布:样本均值、样本方差、样本矩、样本均值差、样本方差比的抽样分布. 4.理解经验分布函数的概念和性质,会根据样本值求经验分布函数. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念单个正态总体均值的区间估计 单个正态总体方差和标准差的区间估计两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验正估计量的无偏性. 2.掌握矩估计法(一阶、二阶矩)和最大似然估计法 3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数值特征的置信区间的求法. 4.掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法. 八、假设检验 考试内容 显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求 1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验. 2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率. 3.掌握单个及两个正态总体的均值和方差的假设检验.试 卷 结 构(-)总分 试卷满分为150分 (二)内容比例 微积分约56% 线性代数约22% 概率论与数理统计约22% (三)题型比例 填空题与选择题约37% 解答题(包括证明题)约63%注:考试时间为 180分钟参考资料:http://123.103.29.54/archiver/tid-2797.html

政治考研要考哪些

电视版
第一门课叫做《马克思主义基本原理概论》,所考分数为22分。我们要说明这门课的性质,性质是基础理论,基础理论讲的是什么,概括成一句话就是什么是马克思主义。具体分开就是,马克思主义哲学、马克思主义政治经济学、马克思主义科学社会主义,实际是讲马克主义的观点的。这门课程的逻辑内容有3个,分别是概念、观点、意义。这门课程就学习来讲是相对较难的。从三部分所占的分数哲学涉及16 分,政治经济学占3分,科学社会主义占3分。就这三部分来讲最重要的是哲学。这就是马克思主义的世界观方法论主要论据讲的是马克思主义哲学。那么另外两部分呢,政治经济学概括到两个字:本质,始终要问政治经济学的本质是什么,实际上就是在批判资本主义政治经济。关于科学社会主义问题要注意两个字:信念,一坚信社会主义必胜、二社会主义必然会代替资本主义。以上是第一门课。第二门课叫《毛泽东思想和中国特色社会主义理论体系概论》(简称“概论”)这门课程可以叫做中国化马克思主义,这门的性质是应用原理,就是要把马克思应用到中国,同时要指导中国的改革建设,同时要概括出自己的新理论。这门课分为两部分,重点是中国的特色社会主义理论体系,同时也是中心。尤其是引起各位同学们的注意的是科学发展观。这是这门课程的重中之重。可以把这门课分为三个部分,12中国化马克思主义的总论34讲毛关于革命的理论 5-15讲中国特色社会主义的理论包括改革开放的理论。同时中国特色社会主义的理论又分为三部分,第一部分5、6、7章主要讲理论;第二部分8、9、10、11章讲总体布局;第三部分13、14、15章主要讲实现条件。在这里特别提醒各位同学们注意第八章,第八章讲建设中国特色社会主义经济。今年的很多热点都和第八章有关。这一章是极有可能出现考题的。在这里突出考试的问题,前面的“原理”主要是考察的是理解、应用。这一部分主要考察的是理解、记,不在用,所以相对来说题目相对容易。第三门课叫《中国近代史纲要》(简称“纲要”),首先需要同学们理解的是,这门课不是理论课,这门课我称为“史论课”,学这门课要做到两个了解,了解中国近代以来的历史,了解中国近代国情。中国近代国情前后是不一样的,在1840-1849的国情是半殖民半封建;1849-1956 新民主主义社会;1956到现在是社会主义初级阶段,国情是不一样的。我们讲国情、国史,得出三个结论,中国人民选择了马克思主义、中国共产党、社会主义是一个政治结论,因此之前的历史不是很关键的,只需要了解。在复习的过程中要抓历史事件。历史事件是指中国历史进程影响很大的事件。第一个历史事件是,帝国主义对中国的入侵。引起了很多问题,中国人民探测到路,以后出现了,太平天国、洋务运动、戊戌变法、辛亥革命、中共成立。抓历史件事的含义、为什么会发生、结果、评价,关键是评价。评价就是要听你的政治评价。这才是历史事件的重点。这门课程有个特点是和毛泽东思想联合起来考。所以在复习的时候注重这两部分的整体复习。第四门课叫《思想道德修养与法律基础》(简称“基础”),这门课的性质不是理论、不是历史,它是规范课,就是讲你要守什么规矩,包括政治思想、道德、法律,表面是两部分,实际上是三部分。这部分的重点在思想道德修养。我把它的八章概括为三部分,一个是思想先进、一个是道德高尚、一个是知法守法。 123讲思想456讲道德5678 讲法律知识。学这门课程把握三个问题,它提倡什么规范,为什么提倡这个规范,怎么实现这个规范。一定知道它的内容、依据、意义。一般的学生会在法律上头痛,法律问题很具体。一共讲了七个法律,它主要考虑知识点,不考思想。大题呢主要出现在五六章,比较容易结合实际出分析题。但总体上来讲考的知识点是不多的。第五门课叫《形式与政策以及当代世界经济与政治》,这门课需要引起同学们注意的是,这门课程的题目叫“以及当代世界经济与政治”,也就是说当代世界经济与政治必须要从形式与政策中出题。这门课的性质是,讲的是党中央现阶段对国际形势政策的认识、判断与主张,主要是考的观点。形势政策主要考胡锦涛的观点以及党中央的观点,主要是考国内的。还有就是当代世界经济与政治,考形式与政策当中党中央对国际形势的判断。一般的基本判断:一、和平与发展是时代的主题;二、多极化、全球化趋势;三,中国和世界的关系;我们需要注意两个问题,第一:坚持走和平发展道路的科学内涵、科学依据、科学举措。第二胡锦涛提出的我们要推动世界和平共同繁荣的和谐世界。以上是对五门课重点的简要分析,概括起来思路很清晰。前两门课是重点,原理是基础课,也是最难的。同学们这段时间需要要注意做题。《概论》是统领课,也需要引起重视。现在我们需要做的工作有掌握教材的基本原理,党中央的新精神、社会热点,要掌握学习的方法,记忆的方法,做题的方法。要不断的做练习题,不断的记忆,在这个阶段就要进行记忆。不能留到以后再背诵,割断做题与背诵的关系。在这个阶段不要等考试考试大纲要抓紧时间复习,明确掌握什么内容,掌握什么方法,培养什么能力,相信同学们一定会取得很好的成绩,最后祝同学们身体健康,考研成功,事业有成!

考研都考什么,考试的内容都是一样的吗

贺麟
报考数学专业的研究生(比如报考应用数学研究生、计算数学研究生、基础数学研内究生、运筹学研究生等)容因为数学是专业课而不是公共课,所以是各个学校自己命题(一般命题为数学分析、高等代数、常微分方程、概率数理统计等或者像北京大学、清华大学会将数学分析、微分方程、实变函数、复变函数合在一张试卷上考察)而报考工科类研究生、物化生类研究生、计算机类研究生、金融经济类研究生,因为高数是公共课而不是专业课,故由国家统一命题,按不同类型分为高数1、高数2、高数3,一般高数一是针对物理类和计算机类研究生,对微积分的要求较高国家统一命题的高数,包括微积分、线性代数、概率数理统计三部分内容,3套试卷各部分所占比例不同。

考研都考些什么?什么是初试、复试?

爱听闻
长别离
考研100问,考研是考什么?初试和复试怎么准备?

考研都考什么内容

同于大通
准备参加研究生考试的同学需要准备哪些考试科目?考研初试复试都考什么?

哲学考研都考什么

机锋
驺虞
例如,若考抄生的目标是北京师范大学,可进入北京师范大学的官网查看当年的招生目录及想报考的专业对应的考试科目及考试内容。考生需要先登录北京师范大学官方网站,找到研究生招生专栏,查看当年发布的招生目录,找到自己想要报考的专业及方向,即可查看初试及复试的考试科目及考试内容啦!个别学校还会发布专业课的考试大纲,考生可记住自己的专业课考试的科目代码查找对应的考纲。雅思专区2020雅思考情了解详情托福专区托福备考建议了解详情SAT专区SAT备考全攻略了解详情查看更多