欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研的十大禁忌是什么?

芬里尔
竞猜王
禁忌一:三心二意禁忌二:意气用事禁忌四:准备不足禁忌五:没有计划禁忌六:贪得无厌禁忌七:过分依赖禁忌八:法不得当禁忌九:消息闭塞禁忌十:信心不足

考研各科复习笔记怎么做

桃太
灰体
一、数学笔记以数一为例,数一考查高数、线代和概率论与数理回统计。准备三个答本子,每个本子分成两部分。第一部分记录重要的公式、定理和关键的推导过程;第二部分记录错题,整理错题题型和各类题型的解题思路。这样,后期复习的时候,无论是记忆知识点还是查找知识点都非常方便。二、政治笔记以马原为例,理清唯物论、辩证法和认识论涉及的各个原理及方法论,将所有知识点连成一个大框架。需要注意的是,在每个原理和方法论之后留出一定的空位,在练习真题之后,将该真题的年份和题号标注在其所涉及的知识点之后。渐渐地就能看清政治考试各频度的考点。三、英语笔记准备一个比较厚的本子,分成四份。第一部分用来整理语法知识,将英语常用的句型及例句进行逐一整理,并且将简单易错的其他语法注意事项记录在所有句型之后。第二部分用来练习长难句,每页只写一个长难句,剩下的部分用来拆分句子结构,写出自己的翻译和正确的翻译,总结自己的不足之处,记录句中的生僻单词和特殊句型。第三部分用来记录阅读题中的生词,到后期,你可以拥有一本自己整理的核心词汇。第四部分用来积累简单又亮眼的好句子,考前总结出自己惯用且不会犯错的句子,整理成自己的作文模板。

考研数学一的知识点归纳

人吓人
樊须
高数部分 考研数学一高数各部分常见题型和知识点。一. 函数、极限与连续 1 求分段函数的复3832合函数; 2 求极限或已知极限确定原式中的常数; 3讨论函数的连续性,判断间断点的类型; 4 无穷小阶的比较; 5讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实 根。二.一元函数微分学 1 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 2利用洛比达法则求不定式极限; 3 讨论函数极值,方程的根,证明函数不等式; 4 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足......”,此类问题证明经常需要构造辅助函数; 5 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 6 利用导数研究函数性态和描绘函数图形,求曲线渐近线。三.一元函数积分学 1 计算题:计算不定积分、定积分及广义积分; 2关于变上限积分的题:如求导、求极限等 3 有关积分中值定理和积分性质的证明题; 4定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积, 压力,引力,变力作功等; 5 综合性试题.四.向量代数和空间解析几何 1计算题:求向量的数量积,向量积及混合积; 2 求直线方程,平面方程; 3判定平面与直线间平行、垂直的关系,求夹角; 4 建立旋转面的方程; 5 与多元函数微分学在几何上的应用或与线性代数相关联的题目。五.多元函数的微分学 1 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 2 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 3 求二元、三元函数的方向导数和梯度; 4 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 5多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。六.多元函数的积分学 1二重、三重积分在各种坐标下的计算,累次积分交换次序; 2第一型曲线积分、曲面积分计算; 3 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 4第二型(对坐标)曲面积分的计算,高斯公式及其应用; 5 梯度、散度、旋度的综合计算; 6 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。七.无穷级数 1 判定数项级数的收敛、发散、绝对收敛、条件收敛; 2 求幂级数的收敛半径,收敛域; 3 求幂级数的和函数或求数项级数的和; 4将函数展开为幂级数(包括写出收敛域); 5 将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理); 6综合证明题。八.微分方程 1 求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型; 2 求解可降阶方程; 3 求线性常系数齐次和非齐次方程的特解或通解; 4 根据实际问题或给定的条件建立微分方程并求解; 5 综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

考研政治的考点汇总

理昧
符瑞
第一章五个要点(1)、马克思主义中国化的历史进程2个考点(2)、中国特色的社会主义旗帜2个考点(3)、中国特色社会主义道路2个考点(4)、中国特色社会主义理论体系2个考点(5)、中国特色社会主义制度1个考点第二章两个要点(6)实事求是思想路线的重要意义1个考点(7)解放思想,实事求是,与时俱进4个考点第四章三个要点(8)从新民主主主义到社会主义的转变1个考点(9)社会注意改造道路和历史经验3个考点(10)社会主义制度在中国的确立2个考点第五章两个要点(11)中国特色社会主义建设道路的初步探索1个考点(12)社会主义的根本任务3个考点第六章两个要点(13)社会主义初级阶段是我国最大的实际2个考点(14)社会主义初级阶段的基本路线和基本纲领1个考点第七章两个要点(15)改革开放是决定当代中国命运的关键抉择4个考点(16)坚定不移地推进全面改革1个考点第八章两个要点(17)社会主义初级阶段的基本经济制度1个考点(18)促进国民经济又好又快发展6个考点第九章两个要点(19)依法治国,建设社会主义法治国家2个考点(20)推进政治体制改革,发展民主政治1个考点第十章三个要点(21)发展社会主义先进文化19个考点(22)建设社会主义核心价值体系5个考点(23)加强思想道德建设和教育科学文化建设7个考点第十一章两个要点(24)构建社会主义和谐社会的重要性和紧迫性2个考点(25)构建社会主义和谐社会的总体思路2个考点第十二章一个要点(26)新形势下“和平统一、一国两制”构想的重要发展2个考点第十三章两个要点(27)国际形势的发展及特点5个考点(28)独立自主的和平外交政策6个考点第十四章一个要点(29)建设中国特色社会主义是全国各族人民的共同事业7个考点第十五章一个要点(30)以改革创新精神全面推进党的建设新的伟大工程5个考点

考研数学二知识点总结

时有所用
八千万
考研数学大纲内容 数二高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: , 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 考试要求1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

考研需要注意什么?

若骤若驰
学思
考研的资格并不一定得是当年的本科毕业生,还有其他的身份可以参加考研,不过需要相对应的条件。考研需要什么条件?

考研复习有什么顺序吗?如何安排?

光之塔
每下愈况
基础3366303762学习期3.1——5.1基础学习期1、英语2小时(1小时单词,1小时阅读专项训练)2、专业课(1.5小时)这个其实是他们考数学的复习数学3、专业课(1.5小时)4、亲临师哥师姐的复试现场(认识师哥师姐,收集复习资料,收集复试题)阶段调整期5.1——5.7阶段调整期做一套模拟试题,针对性调整计划5.8——6、20基础学习期(目前复习处于本阶段)1、政治的预习开始 40分钟/天 哲、历、法三部分内容 考研政治红宝书和大纲解析2、1.5小时(0.5单词。1小时阅读)3、专业课(一)1.5小时4、专业课(二)1.5小时6.20——7.7期末考试周期末考试期间仍要坚持看考研内容,持之以恒,时间可以稍短2小时/tian7.8——9.1暑期,得暑期者得天下建议:1、在校学习不回家,或者回家几天再返校,选择一个学习氛围好的学校。2、组建健康的考研团队3、利用暑期上好辅导班,整理笔记,注意老师讲的补充知识点/不上辅导班,政治,英语,数,专个2小时9.1——10.1迷茫期1、政治0.5小时(背笔记,做习题)2、英语1小时(作文,翻译)3、专业一1.5专二2小时,看导师的论文,专著、课题10.1——10.7阶段调整期10.1、10.2全真模拟试题(大题要做,调整偏科)10.8——考研前2周 冲刺期1、政治1.5(强化记忆,模拟训练五套就够)2、英语1小时 模拟题注意:1、报名9月在校生网上预报名,10月网上报名,11月现场确认,11月底缴费,电子银行转账2、11月底 专业课命题完毕3、12月,公共课命题完毕考前两周——考试当天 恢复调整期,主要做模拟训练1、政治、专业课从头到尾看3遍2、英语,被四篇作文板块3、千万不要再考试前两天休息,如果要休息那就考试前两周,彻底放松一下

考研数一怎么复习

方今之时
咬者
一、夯实基础知识是前提从近十年考研数学试题来看,试卷中80%的题目都是基础题目,真正需要冥思苦想的偏题、难题只是少数。这就要求同学们结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。数学最需要强调的是基础而不是技巧,很多同学往往不重视基础的学习,反而只是忙着做题,想通过题海战术取得考研数学高分。这就像是不会走路的孩子总想着直接跑步一样,即便是投入再大的精力,当然也无法起到预期的效果。二、注意基本概念、基本方法和基本定理的复习掌握结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。分析表明,考生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。因此,首轮复习必须在掌握和理解数学基本概念、基本定理、重要的数学原理、重要的数学结论等数学基本要素上下足工夫,如果不打牢这个基础,其他一切都是空中楼阁。三、多思考,多做题数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。在做题时,一定要自己先思考,不管做到什么程度,最起码你思考了。只有这样,才能对知识有更深入的理解和掌握,才会具有独立的解题能力。学好数学需要多做题,但并不是让同学们搞题海战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变。四、开始进行综合试题和应用试题的训练数学考试中有一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度相对较大。在首轮复习期间,虽然它们不是重点,但也应有目的地进行一些训练,积累解题经验,这也有利于对所学知识的消化吸收,彻底弄清有关知识的纵向与横向联系,转化为自己的东西。五、总结归纳是关键每学完一个知识点要进行总结,把知识点的精华部分提炼出来,写在笔记本上,对不太懂的知识点以及考试常考的知识点要进行详细的记录,在以后复习过程中,直接看笔记本即可。对知识点的整理、总结,可帮助考生进一步加深对知识点的理解、掌握。学数学,做题是必不可少的。大家做每一道题都要认真对待,将题目从头看一遍,分析该题考查了哪些知识,检查自己在解题中的3431353338缺陷,找到简便的解题方法。对于做错的题目要做重点标记,并抄到错题本上,总结一下自己在哪些方面出错了,原因是什么,找到问题解决问题,才能在今后遇到同类型的题目不再犯相同的错误。对于大题来说,不再考查单一知识点,而是同时考查多个不同章节的知识点,通过练习掌握这些知识点间的联系,从而使自己所掌握的知识系统化,达到融会贯通。数学一相对来说难度比较大,花费的时间也很大,基础薄弱的考生可以通过看网课,跟着老师学习的方法,先提高对学习数学的兴趣,然后掌握一定的技巧和方法,对做题很有帮助。多做题,把难点一一攻克,准备错题本,经常查漏补缺,只要坚持就会取得很大的进步。

考研政治怎么复习?

皆有所明
二十秒
考研政治的复习要规划好复习的时间,把复习的时间按时间长短分为不同的三个阶段,每回个阶段分配不同的时长答,每个阶段复习的特点不同。主要可以分为三步走。具体三步走的方法如下。1、第一阶段算作政治的复习早期,这个时间段主要就是把政治书全部过一篇。在这个过程中,需要认真的把政治书从头到尾全部熟读。但是不需要强记硬背。只需要了解有哪些知识点和内容即可。2、第二阶段是强化记忆阶段。在一个阶段就需要根据考试大纲开始重点理解、记忆。对于重点知识更是需要多看、多记、多背、多理解。达到融会贯通的地步。在这一阶段需要边复习边通过习题来巩固。3、第三阶段就是查漏补缺的阶段。在这一阶段已经是快要到考试的时间了。在这一时间段我们只需要对还没有掌握牢固的知识点进行突击。并要开始进行真题的训练。通过真题的训练达到真正的查漏补缺。