欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

数据科学与大数据技术考研,可以考那些方向

福亦不来
幻之光
首先,从当前大数据领域的人才需求情况来看,以研究生为代表的高端人才有的机会获得高附加值的工作岗位,而且由于当前大数据技术尚处在落地应用的初期,所以未来大数据领域还会需要大量高端应用型人才(专硕),从这个角度来看,当前大数据专业的本科生,选择考研是不错的选择。大数据专业考研有多种选择,可以根据自身的发展规划、知识结构和能力特点来进行选择,同时也要考虑到行业发展趋势和技术发展趋势。从目前大数据方向研究生的培养渠道来看,计算机专业是一个重要的培养渠道,同时统计学、经济学、金融等专业,也有培养大数据方向研究生的能力。由于当前大数据专业的开设时间比较短,所以很多大数据专业还没有硕士点,要想有更大的选择空间,可以选择跨考计算机等专业。大数据专业的本科生在读研时,在方向的选择上还是比较多的,除了可以考虑大数据相关方向之外,还可以考虑人工智能领域的相关方向,包括自然语言处理、计算机视觉、机器学习等。如果选择专硕,可以重点考虑如何通过大数据技术与行业相结合,在产业结构升级的过程中,行业领域也有很多创新点。最后,在选择主攻方向的过程中,还需要考虑到学校自身的学科实力、行业资源整合能力等因素,选择学科实力比较强的方向往往会有更好的科研体验,而选择行业资源比较丰富的方向,往往对于就业有非常积极的影响。

考研大数据分析,看完你就知道竞争有多大了

高丽僧
妙冤家
基本上全国都有各学校的考场报名的时候,你知道找深圳的考场报名就可以了。当然也在深圳缴费。拍照片。然后1月14、15日在深圳考试即可。试卷会被考场密封邮寄到吉林,然后判卷。你只需要做的就是报名选深圳的考场。但是要注意早点,考位就那么多,迟了你恐怕得去广州了。

开设大数据专业的250所高校分别是哪些高校?

阿提卡
开之以利
1.考研复习阶段分析  考研复习是一个庞大的系统工程,复习课程多,时间跨度长,因此,考研复习必须有一个整体的规划。总的复习进度划分为起步、强化和冲刺三个阶段。  (1)起步阶段(第一轮复习)  首轮复习的目的是全面夯实基础。英语、数学复习都具有基础性和长期性的特点,而专业课内容庞杂,因此它们的第一轮复习都安排在起步期。政治复习可以暂缓,等新大纲出版后再进入首轮复习。  (2)强化阶段(第二轮复习)  所有科目的第二轮复习都安排在强化期。这一阶段要从全面基础复习转入重点专项复习,对各科重点、难点进行提炼和把握;同时注意解题能力的训练

关于研究生读大数据处理,云计算的问题?

万钟之禄
始作
云计算与大数据是什么:1、大数据本身除了要有数据、采集、汇聚一定量的数据之外,更重要的是数据的处理、挖掘、分析、可视化、应用这样一整套的过程。2、关于大数据的话题,基本围绕三个问题展开:一是数据从哪里来,二是数据如何进行分析,三是数据如何进行商品化。任何大数据都是以应用为主的,在未来,通过多维度、多复合的大数据的精准挖掘,最终提供出优质的商务解决方案才是最关键的。3、数据的三个来源分别是政府、企业行业和个人消费。政府数据做了授权,但由于法律和其他方面的不健全,政府数据被滥用。消费者数据来源于电信、金融或大企业,流量入口处的数据将被自动抓取,数据提供商可以提供所有维度的数据,但每一个都是局部。4、数据优化商在大数据产业链里要想长久发展,必须精通大数据的模型、算法以及数据特征,同时对行业及生态要有明显的敏感性。而算法提供商如果仅仅依赖单纯算法,未来将成为成长软肋。应用提供商最贴近客户、最熟悉客户需求,同时做的是最后的数据整合,在产业链上可能发展空间更大。而”云计算”带来会带来以种变革——由专业网络公司来搭建计算机存储、运算中心,用户通过一根网线借助浏览器就可以很方便的访问,把“云”做为资料存储以及应用服务的中心。云计算与大数据就业前景:随着时代的发展,互联网的普及,越来越多的地方会用到云计算与大数据,无论是计算机行业,还是汽车领域,云计算与大数据专业人才的缺口都是比较大的,那么云计算和大数据的就业前景是非常好的。研究生考试科目:首先最好了解一下要报考学校云计算与大数据专业要考什么,每个学校的考查科目会有所不同。可以去学校的官网查看云计算与大数据要考什么。如何备考研究生:备考研究生是一个需要意志力的过程,首先要有一个整体的复习规划,考研根据个人情况,最好不要提前很久就开始准备,比较理想的情况是8个月,因为提前很久开始准备,到了后期冲刺阶段,很多考生就很觉得很疲倦。考研笔试过关了之后还有复试,复试线由大部分招生单位都会公布这些数据,或者在研究生院,也有的在各自院系以通知的形式发布。每个学校的复试线会有所不同。过了复试线只是意味着有机会参加复试,并不一定能被录取。所以这里面还有一个最低录取线。这条线肯定比复试线稍高一些。因此,考研复习要多下功夫,初试一定要考过复试线。如此,才有可能取得最终的成功。不要着眼于刚刚过复试线。

我专科学历,出来想往大数据方向发展,听别人说这个方向一定要考研是真的吗?

大麻糕
严羽
现在管理大数据的。并不一定要求考研的,但管理大数据确实得需要电子计算机专业知识的。

数据科学与大数据技术专业有哪些学校

满天飞
奚若
大数据的时代,很多学校都开设了大数据相关的专业和课程。在教育部公布的高校新增专业名单中,有32所高校成为第二批成功申请“数据科学与大数据技术”本科新专业的高校。从两次获批的”数据科学与大数据技术专业”名单中可以看出,该专业学制都为四年,授予工学学位或理学学位。第一批成功申请该专业的高校共有3所,为北京大学、对外经济贸易大学及中南大学,于2016年2月获得教育部批准。“大数据”专业学什么?方向一↗ 数据挖掘、数据分析&机器学习方向方向二↗大数据运维&云计算方向方向三↗Hadoop大数据开发方向精通任何方向之一者,均会 “ 前(钱)”途无量。三个方向中,大数据开发是基础。以Hadoop开发工程师为例,Hadoop入门月薪已经达到了 8K 以上,工作1年月薪可达到 1.2W 以上,具有2-3年工作经验的hadoop人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径!“大数据”专业毕业以后干什么?事实上,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数了(美元)。目前全国各类高校、高职院校已陆续开始围绕大数据专业建设展开研究并申报大数据专业。作为交叉型学科,大数据的相关课程涉及数学、统计和计算机等学科知识,“数据科学与大数据技术”专业也强调培养具有多学科交叉能力的大数据人才。该专业重点培养具有以下三方面素质的人才:一是理论性的,主要是对数据科学中模型的理解和运用;二是实践性的,主要是处理实际数据的能力;三是应用性的,主要是利用大数据的方法解决具体行业应用问题的能力。

大数据可视化对应研究生什么样的专业

名实不入
必入而叹
交叉学科;数学,统计,计算机,软件工程均可,有的学校有大数据的研究方向~

如何考大数据的研究生

陈澧
第一页
一般情况下,国内的研究生分为学术型硕士和专业型硕士,一般学术型硕士的学费为每人每年8000元,专业型硕士研究生的学费一般为每人每年7000元,不包含住宿费。当然这个费用只是个大概,具体的每个大学的费用都不一样,不同的专业也有所不同,甚至还会受大学所在地的经济水平的影响,比如同样是环境工程专业,北京某高校的学费大概5000+,而西北某高校大概为4000+。再说具体点呢,就比如在重庆,学费7000一年,生活费吃饭每月600元吃食堂足矣,房租学校的公寓,非常便宜每年500,一般是每年1200,另外加电话费每月50,网络每月50,这些就是最低的开支,如果某些特别收费高的专业和学校,或你自己在外面租房,生活标准更高,其他开支,这就另当别论。在中国绝大多数学校,大多数专业,按一般的生活标准,两万足矣。如果你是留学生,可能会更高。

哪些大学开设了大数据专业,并且已经有了应届毕业生

兴象
土里土气
国论文网http://www.xzbu.com/1/view-7050455.htm关键词:民院校;大数据;人才培养一、大数据技术概述最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。二、国内外研究现状国外除了在大数据的概念上的研究外,重点放在技术研究。美国政府六个部门启动的大数据研究计划中,绝大多数研究项目都是应对大数据带来的技术挑战,重视的是数据工程而不是数据科学,主要考虑大数据分析算法和系统的效率。国内在大数据研究领域的重点在大数据与云计算、数据挖掘,并行计算和分布式处理,应用式主要集中在地理信息系统。但目前国内高校很少有开设大数据方向的相关专业,业内先驱当属北航软件学院大数据技术与应用专业。此专业是北航软件学院、北航计算机学院与慧科教育(工信部移动云计算教育培训中心)联合打造的大数据技术与应用专业,于2012年开始招收工程硕士。另外,2013年,华东师范大学成立了数据科学与工程研究院;2014年,华南理工大学设立了云计算与大数据专业;同年,清华大学成立“清华―青岛数据科学研究院”,设立大数据的硕士博士学位项目。另外,开设大数据相关本科专业的院校有贵州师范学院、贵州大学和北京城市学院。而2014年9月开始,西安欧亚学院也开始对外招收网络工程专业(大数据方向)。三、民院校人才培养方案的制订西安欧亚学院作为一所民三本院校,本着创新型教育理念,一直致力于应用型人才的培养。从2012年开始筹备至今年正式招生,共两年时间。无论从企业需求,还是学术要求,我们都进行了充分的调研及论证。1.前期准备(1)资料准备在与北京大学教授合作的项目中,受到启发。继而开始搜集大数据方面的各种文献资料,对目前国内各大高校的专业开设情况进行考察,借鉴他人的宝贵经验。最终形成了一个初步的课程规划清单。(2)企业调研根据以往的教学经验,我们知道,学生将来是否能顺利的找到工作,与其在学校接受的教育是息息相关的。很多时候,我们只是从一个教师的角度考虑,应该培养出什么样的学生。可是,我们并不了解,目前,就某一个行业领域,企业需要什么样的人才,无论从专业能力方面,还是从个人基本素质方面。鉴于此,我们对一些相关企业做了调查问卷,结果得出,企业需要的大数据人才,从个人素质方面,需要以下能力:良好的数据敏感度,能从海量数据提炼核心结果。对统计、数学建模有强烈的兴趣和钻研精神。良好的学习能力、团队协作能力、逻辑思维能力、分析能力。擅长与商业伙伴的交流沟通,具有优秀的报告讲解能力及沟通能力。工作高效,有条理,细致,态度积极,责任心强,能够承受较强工作压力。在专业技能方面,需要以下能力:熟悉数理统计、数据分析、数据挖掘等基础知识,熟知常用算法。熟练使用SAS、SPSS、R、Excel等统计分析软件。精通至少一门编程语言(C、Java、Python、shell)。了解数据结构和算法设计。熟悉Linux操作系统开发环境。(3)师资培养学生所学知识的源头均来自于老师。我校教师大多从学校毕业后直接任教,缺乏实际工作经验。虽然基本的理论知识都能掌握,但应用于实践的能力缺乏。为此,我们将教师分批派往不同合作公司进行挂职锻炼,为期一个月至半年不等。这样,教师不但能充分发挥自己的业务专长,将理论联系于实际;同时,在企业中,能经历到不一样的工作状态和企业氛围。将来回归课堂,能给学生传递的不仅仅是科学知识,更重要的是书中没有的工作经验和阅历。另外,在大数据方面,有很多不同方向的讲座、论坛、会议。其间,各领域的业内高手都会云集,畅谈自己的编程经验或心得体会。我们会及时派出相关老师外出参会,听取高手经验、开拓视野的同时,更希望能和高手有交流甚至合作的机会。(4)专家论证经过我们的调查问卷和深入企业实习的见闻体会,我们更加明确了大数据人才培养的方向,进一步完善了培养计划。为了更有力的支持我们的方案,专业开发团队先后多次请来名校教授进行座谈论证,经过5次不断的“推翻―重做―修改”,最终形成2014级学生的人才培养方案。2.方案阐述我校在网络工程专业开设了一个大数据方向的实验班,本科四年制,培养阶段划分为通识教育、专业培养和多元化培养三个培养阶段。第一阶段:通识教育培养阶段。按照工程人才培养的共性要求而设置,并为全面素质教育奠定基础。包括综合基础和基本技能两个模块。在综合基础模块中,设置了由“政治思想理论课、高等数学、大学物理、体育”等系列课程构成的必修课程,和由人文科学与艺术、社会科学、自然科学等系列课程构成的选修课程。重点满足对学生逻辑思维、思想品德、身心健康、人文科学与艺术、社会活动能力等各方面素质培养的要求。在基本技能模块中,主要设置有计算机类、英语类和人文类等课程。重点培养学生具有较强的计算机应用能力、良好的中外文沟通、表达与写作能力,基本工程与科研素养以及良好的国际视野和国际竞争能力。第二阶段:专业培养阶段。培养大数据分析人才必备基础理论知识和技术能力。包括专业基础能力和学历提升两个模块。学历提升模块开设计算机类考研必备的高等数学、英语、计算机网络、数据库基础、数据挖掘等基础性课程,使学生掌握扎实的学科基础理论;专业基础模块开设统计学基础、多元统计分析、时间序列分析、Hadoop并行计算、数据可视化技术和分布式云计算等专业技术基础课程,让学生掌握大数据在数据管理、系统开发、数据分析与数据挖掘等方面的核心技能,培养工程人才在计算机学科网络大数据专业领域中必要的、最基础的知识和能力。第三阶段:多元化培养阶段。通过设计多元化课程体系,为学生提供自主选择专业方向的机会,使学生个性培养得以实现。大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。四、结束语目前,数据分析是一个朝阳行业,而高校大数据人才培养更是一个新兴的领域,在很多公高校都没有做好准备的情况下,作为民的三本院校,我们踉跄起步,希望在未来的发展中,能总结出的经验,不断完善自己,更希望能给于兄弟院校一个参考的思路,我们共同完善大数据人才的培养工程。本回答被网友采纳