欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数学一的知识点归纳

天下
虽亵
高数部分 考研数学一高数各部分常见题型和知识点。一. 函数、极限与连续 1 求分段函数的复合函数; 2 求极限或已知极限确定原式中的常数; 3讨论函数的连续性,判断间断点的类型; 4 无穷小阶的比较; 5讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实 根。二.一元函数微分学 1 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 2利用洛比达法则求不定式极限; 3 讨论函数极值,方程的根,证明函数不等式; 4 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足......”,此类问题证明经常需要构造辅助函数; 5 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 6 利用导数研究函数性态和描绘函数图形,求曲线渐近线。三.一元函数积分学 1 计算题:计算不定积分、定积分及广义积分; 2关于变上限积分的题:如求导、求极限等 3 有关积分中值定理和积分性质的证明题; 4定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积, 压力,引力,变力作功等; 5 综合性试题.四.向量代数和空间解析几何 1计算题:求向量的数量积,向量积及混合积; 2 求直线方程,平面方程; 3判定平面与直线间平行、垂直的关系,求夹角; 4 建立旋转面的方程; 5 与多元函数微分学在几何上的应用或与线性代数相关联的题目。五.多元函数的微分学 1 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 2 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 3 求二元、三元函数的方向导数和梯度; 4 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 5多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。六.多元函数的积分学 1二重、三重积分在各种坐标下的计算,累次积分交换次序; 2第一型曲线积分、曲面积分计算; 3 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 4第二型(对坐标)曲面积分的计算,高斯公式及其应用; 5 梯度、散度、旋度的综合计算; 6 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。七.无穷级数 1 判定数项级数的收敛、发散、绝对收敛、条件收敛; 2 求幂级数的收敛半径,收敛域; 3 求幂级数的和函数或求数项级数的和; 4将函数展开为幂级数(包括写出收敛域); 5 将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理); 6综合证明题。八.微分方程 1 求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型; 2 求解可降阶方程; 3 求线性常系数齐次和非齐次方程的特解或通解; 4 根据实际问题或给定的条件建立微分方程并求解; 5 综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

考研数学复习有哪些重点的知识点

威士忌
五常
考研数学的复习,主要从知识点、练习题、解题技巧、历年真题与冲刺模拟入手,复习资料可以看汤家凤的以下:知识点全覆盖:2017《考研数学复习大全》(数一数二数三都有);练习题2017《考研数学接力题典1800》解题技巧:2017《考研数学客观题简化求解》《考研数学常考题型解题方法技巧归纳》历年真题:2017《考研数学15年真题解析与方法指导》冲刺模拟:2017《考研数学全真模拟试题及精析》《考研数学绝对考场最后八套题》

考研数学怎么总结知识点和做题套路?

不足谓墨
金与木也
全书刷上五六遍,妥妥的100+。天赋+勤奋=高分

如何掌握考研数学知识点

夫子有乎
九三年
高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。具体说来,大家需要重点掌握的知识点有几以下几点:1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

考研数一考哪些内容啊

痴呆症
流亡者
数学一(考试大纲)高等数学一、函数、极限、连续(一)考试内容的变化新增知识点:无 调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立” 删减知识点:无(二)考试要求的变化考试要求没有变化二、一元函数微分学(一)考试内容的变化新增知识点:无 调整知识点:将“基本初等函数的导数导数和微分的四则运算”调整为“导数和微分的四则运算基本初等函数的导数” 删减知识点:无(二)考试要求的变化1.考试要求中将2005年的“4.会求分段函数的一阶、二阶导数”以及“5.会求隐函数和由参数方程所确定的函数以及反函数的导数”调整并合并为“4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。2.将原来的第9条提前至第6条,足见“洛必达法则求未定式极限”的重要性。三、一元函数积分学(一)考试内容的变化新增知识点:增加了“用定积分表达和计算质心” 调整知识点:无 删减知识点:无(二)考试要求的变化考试要求没有变化四、向量代数和空间解析几何无变化五、多元函数微分学无变化六、多元函数积分学(一)考试内容的变化新增知识点:无 调整知识点:将“二重积分、三重积分的概念及性质二重积分、三重积分的计算和应用”调整为“二重积分与三重积分的概念、性质、计算和应用” 删减知识点:无(二)考试要求的变化考试要求没有变化七、无穷级数无变化八、常微分方程(一)考试内容的变化新增知识点:无 调整知识点:无 删减知识点:无(二)考试要求的变化考试要求中将“了解微分方程及其解、阶、通解、初始条件和特解等概念”调整为“了解微分方程及其阶、解、通解、初始条件和特解等概念”线性代数一、行列式无变化二、矩阵无变化三、向量(一)考试内容的变化新增知识点:无 调整知识点:无 删减知识点:无(二)考试要求的变化考试要求中将“4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的关系”调整为“理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系”四、线性方程组无变化五、矩阵的特征值和特征向量无变化六、二次型(一)考试内容的变化新增知识点:无 调整知识点:无 删减知识点:无(二)考试要求的变化考试要求中将“3.了解二次型和对应矩阵的正定性及其判别法”调整为“3.理解正定二次型、正定矩阵的概念,并掌握其判别法”概率论与数理统计一、随机事件和概率无变化二、随机变量及其分布无变化三、二维随机变量及其分布(改为“多维随机变量及其分布”)(一)考试内容的变化新增知识点:无 调整知识点:(1)将“二维随机变量及其概率分布”调整为“多维随机变量及其分布”;(2)将“二维连续性随机变量的概率密度、边缘密度和条件密度”调整为“二维连续性随机变量的概率密度、边缘概率密度和条件密度”;(3)将“两个随机变量简单函数的分布”调整为“两个及两个以上随机变量简单函数的分布”删减知识点:无(二)考试要求的变化(1)将“1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质”调整为“1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质”,(2)将“2.理解随机变量的独立性及不相关的概念,掌握离散型和连续性随机变量独立的条件”调整为“2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件”,(3)将“4.会求两个随机变量简单函数的分布”调整为“4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布”四、随机变量的数字特征无变化五、大数定律和中心极限定理(一)考试内容的变化新增知识点:无 调整知识点:无 删减知识点:无(二)考试要求的变化(1)将“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)”调整为“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)”;(2)将“3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布的中心极限定理)”调整为“3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)”六、数理统计的基本概念无变化七、参数估计(一)考试内容的变化新增知识点:无 调整知识点:无 删减知识点:无(二)考试要求的变化将“4.了解区间估计的概念”调整为“4.理解区间估计的概念”八、假设检验(一)考试内容的变化新增知识点:无 调整知识点:无 删减知识点:无(二)考试要求的变化将“2.了解单个及两个正态总体的均值和方差的假设检验”调整为“2.掌握单个及两个正态总体的均值和方差的假设检验”。

我考研书考数1,感觉知识点太多了,特别是高数!

埃及人
冯红
考验数学最好报个辅导班,因为考试是按照大纲出题的,到时候会有老师指导你哪个知识点出多少分和可能性的。

跪求高手指点一下考研数学一大纲上知识点都会考到吗?

蓍草
白棉花
像泰勒公式这种近十年基本不出题的知识点很少,大纲给出的知识点有些注明“了解”的,可以少花些时间。你可以去书店买一本真题,要那种每章后边带有“历年试题按题型分值分布情况表”的真题,上边会帮你分析各题型近些年的考频,然后你就看哪些知识点近十年考的频率比较高,有针对性地加强复习,根据真题的情况去复习课本知识点,重点看大纲中带有“掌握”、“理解”字眼的知识点。(另:不知道你们那是不是也用李永乐的《数学复习全书》,也可以根据“全书”的重难点来复习课本,复习课本时重点分析例题,比大量做课后习题有效。)希望能帮到你。像泰勒公式这种近十年基本不出题的知识点很少,大纲给出的知识点有些注明“了解”的,可以少花些时间。你可以去书店买一本真题,要那种每章后边带有“历年试题按题型分值分布情况表”的真题,上边会帮你分析各题型近些年的考频,然后你就看哪些知识点近十年考的频率比较高,有针对性地加强复习,根据真题的情况去复习课本知识点,重点看大纲中带有“掌握”、“理解”字眼的知识点。

考研数学三具体是哪些啊,和数学一有什么不同啊

长距离
数学三是针对考经济和管理的研究生,高数、线代、概率论都要考,但难度比数学一要小很多,知识点也比数学一少考。 其中高数三的三重积分、曲线积分、曲面积分等知识点是不考的,线代的向量不考,概率论后面的区间估计那块的一些知识点也不考。 如果考数学三,建议把基础打打好,到到考场上不粗心,把会的都写写好,分应该不会低。 数学一的话,难度比数学三要大一些,下的功夫也要大。最好是看大纲10月份一般都会出 上面那些东西考 哪些东西不考介绍的很清楚

考研数学怎么样才能考高分呢

饥之渴之
美容店
我在网上找的满分数学的童鞋的方法,希望对你有帮助!!(一) 复习方法(1)通读教材 三月份到五月中旬是我选择的通读教材的时间。看教材要做到细致,要对基本概念基本定理有充分的理解,最好还要弄懂每个定理的证明,我认为这些定理的证明过程对培养缜密的思维逻辑和良好的思维习惯非常有帮助,最重要的是要做课后的练习,课后练习题是对基本概念基本定理最基础的拓展和应用。当然,说到这儿,一本全面细致的教材课后习题答案就成为必备了(2)选好基础习题集经过两个月至三个月的精读教材,相信不少同学对数学已经颇具感觉,这时候需要用做题来巩固这种感觉才能加深对概念定理的理解,使数学解题能力再上一层。在这个阶段,我认为练习题不能过难,否则会极大打击前一个阶段建立的信心,但过于简单又无法领悟研究生入学考试数学科目的难度。在这个阶段我选择的习题是《复习指南》,也有一些人推荐李永乐老师的《复习大全》,但由于我没有读过所以不敢妄加评论,只说一下对《复习指南》的看法。有些人说《复习指南》的解题方法太注重技巧,我没有此种感觉,反倒觉得书中的一些思维定式或者说固定的思维方向对于应试数学非常有用,一直觉得应试数学相对其他科目比较机械,没有什么可以主观发挥的东西,因此只要学会了那种固定的思维方法,应试数学就很容易了。 我看第一遍《复习指南》的时间在五月中旬至七月上旬,其实看第一遍还是很费劲和痛苦的,速度很慢,有些题目也想不清楚,现在想想如果当时找个学伴,两个人互相督促和交流,效果可能更好些。看第一遍《复习指南》应该注意两点:一是切忌光看不练,书中例题多,习题少,而且习题的答案也不详细,因此最重要的是例题,最好每道例题都动手做一做,对于巩固所有知识点、提高解题能力是大有裨益的;二是要对不同程度的例题作出标记——有一些很快就能做出来,有些想很久才能做出来,也有些看了答案才恍然大悟,对不同的题要做不同的处理和注释,这样再看第二遍的时候才不至于简单的重复,才能做到有的放矢。(3)巩固基础、熟悉真题 8月份至考研前这段时间,我基本上都是处在不断地通过做题来加强数学解题能力的复习状态中,熟悉真题和大量做模拟题自然必不可少。我参加的那个班级的授课老师是黄先开老师、陈文登老师和曹显兵老师,其中黄先开老师讲授了大部分的高数和全部的线性代数,陈文登老师讲授了一部分高数,概率主要是由曹显兵老师讲的。近来也有些师弟师妹问我哪些老师讲得好,其实我觉得这些老师讲得都非常好,只是哪些老师的授课风格更适合自己而已。我很喜欢我选择的这个组合,因为非常适合我,黄老师的授课风格非常严谨,逻辑性也很强,而且讲课中没有一句与数学无关的话,效率很高,也使我受益匪浅。考研班结束后,我的数学笔记记了满满一厚本,在后来的复习中,数学笔记也是给了我很大的帮助,但让我收获最大的是考研班的学习气氛给了我很大的压力和动力,让我在那个炎热的夏天振作起来以更饱满的精神投入考研复习中。第二,关于模拟题的选择问题。现在大家比较推崇的模拟题主要是四百题和陈老师的模拟题,我只做过前者。凭心而论,四百题真的很难(我最后的成绩也只是在120分左右),以至于我在拿到考研试卷的时候都觉得考研题太简单而不敢相信。四百题为前期模拟题。在复习数学的最后阶段,应该选择与真题难度相近的模拟题。而且要保证天天都做题,这样才会在考试时更快的进入状态。第三,总结自己的错题集十分必要。这一点是我和很多考研战友交流之后得出的结论。在复习后期,将数学笔记和错题集常常拿出来温习成为我周围很多人的习惯。事实证明他们在考研中也取得了很不错的成绩。因此我觉得这种方法也比较值得借鉴。 (二) 心路历程 曾经一位师姐对我说她考研的时候,有一天突发奇想,“地球是如何自转起来的呢”,牛顿说过“是上帝踢了地球一脚”,于是她就想“要是上帝踢我一脚该多好啊”。那时她对我说起上面这段话时,我十分不理解她的意思。后来自己成为考研大军中的一员时,才体会了她的心境——无助,还是无助。其实,在考研中,有时候心情是很不平静的,甚至是波涛汹涌的,会因做不出题而沮丧,会因做错题而苦恼,会因效率低而郁闷,会因很多小事甚至是道听途说的传言而彷徨无助。我想对大家说的是,每个人都会面对这样的问题,而非某一个人心理素质不好或是其他。无论怎样的荆棘道路,我们都一起走过;无论怎样的郁闷心情,我们都一起经历;只是我们不曾相识。因此,朋友,不要理会那些不平静的心情,矢志不渝地走下去,成功属于每个为之不懈努力追求的人! 希望以上冗杂的文字能给那些正在斟酌是否要考研的朋友们一点启示,更希望能给已经准备考研的朋友些许帮助。登山则情满于山,观海则意溢于海,相信只要全力付出,每个人都可以实现自己的梦想!这问题等于没问 肯定要提高自己的答对率 答对率是靠你自己的解题能力 你自己解题能力肯定和别人的不同,你的问题是要找到自己的失分所在。