欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

考研数一,数二,数三难度上的区别?

动物园
大目视之
数学一最大,数学三最小。数学一的难度主要体现在内容多,给考生的复习加大了难度;而数学二由于内容较少,试题的灵活性也相对较大。但总的来说,数一数二和数三区别不大,在都考的部分,要求是差不多的,考试中三张试卷中完全相同的试题也占到了很大比重。

考研数一数二数三各个难度,都考什么和不考什么,能给个准确答案吗?

大辩不言
和不欲出
数学二不考概率论与数理统计,数学一和数学三都是考三门:高等数学,线性代数,概率论与数理统计,数学三相比于数学一来说,不考三重积分,空间解析几何和向量代数,曲线积分与曲面积分,先说这么多吧,有什么问题直接加我:9439八零酒领就

考研中,数一,数二,数三哪个最难?

不公平
水野
非理工科数三比数四考点范围广且难理工科数一比数二考点范围广且难,名校,比如清华,经济类也要求考数一

考研数学几最难。数1234难度排名是什么

起则于于
不谋于知
考研数学一最难。数1234难度排名是数一、数二、数三、数四。针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二。针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。扩展资料:一、须使用数学一的招生专业1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。2.授工学学位的管理科学与工程一级学科。二、须使用数学二的招生专业工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。三、须选用数学一或数学二的招生专业(由招生单位自定)工学门类中的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中对数学要求较高的二级学科、专业选用数学一,对数学要求较低的选用数学二。参考资料来源:百度百科-考研数学

考研数一数二数三的区别

美刺
颜渊
一、科目考试区别:1、线性代数:数学一、二、三均考察线性代数这门学科,而且所占比例均为22%,从历年的考试大纲来看,数一、二、三对线性代数部分的考察区别不是很大,不同的是数一的大纲中多了向量空间部分的知识。2、概率论与数理统计:数学二不考察,数学一与数学三均占22%,数一比数三多了区间估计与假设检验部分的知识,但是对于数一与数三的大纲中均出现的知识在考试要求上也还是有区别的,比如数一要求了解泊松定理的结论和应用条件,但是数三就要求掌握泊松定理的结论和应用条件。3.高等数学:数学一、二、三均考察,而且所占比重最大,数一、三的试卷中所占比例为56%,数二所占比例78%。二、试卷考试内容区别:1、数学一:高等数学:同济六版高等数学中除了第七章微分方程考带*号的欧拉方程,伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;第九章第五节不考方程组的情形;第十二章第五节不考欧拉公式。线性代数:数学一用的教材是同济五版线性代数1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。其中向量组的线性相关性中数一考向量空间,线性方程组跟空间解析几何结合数一也要考。2、数学二高等数学:同济六版高等数学中除了第七章微分方程考带*号的伯努利方程外,其余带*号的都不考;所有“近似”的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止。线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。概率与数理统计:不考。3.数学三高等数学:同济六版高等数学中所有带*号的都不考;所有“近似”的问题都不考;第三章微分中值定理与导数的应用不考曲率;第四章不定积分不考积分表的使用;不考第六章定积分在物理学上的应用以及曲线的弧长。第七章微分方程不考可降阶的高阶微分方程,另外补充差分方程。不考第八章空间解析几何与向量代数。第九章第五节不考方程组的情形,第十章二重积分为止,第十二章的级数中不考傅里叶级数。线性代数:数学一用的参考教材是同济五版线性代数,1-5章:行列式、矩阵及其运算、矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。数三不考向量组的线性相关性中的向量空间,线性方程组跟空间解析几何结合的问题。概率与数理统计的内容包括:1、概率论的基本概念2、随机变量及其分布3、多维随机变量及其分布4、随机变量的数字特征5、大数定律及中心极限定理6、样本及抽样分布7、参数估计,其中数三的同学不考参数估计中的区间估计。三、对应考试的专业不同。数学一是报考理工科的学生考,考试内容包括高等数学,线性代数和概率论与数理统计,考试的内容是最多的。数学二是报考农学的学生考,考试内容只有高等数学和线性代数,但是高等数学中删去的较多,是考试内容最少的。数学三是报考经济学的学生考,考试内容是高等数学,线性代数和概率统计。高数部分中,主要重视微积分的考察,概率统计中没有假设检验和置信区间。扩展资料:首先,海天考研飞跃计划建议考生在复习的时候对基本概念性的内容尽量从以下6个方面去理解和把握:概念产生的背景,定义概念用到的数学思想方法,概念的定义式,概念的数学含义,几何、物理以及经济意义,最后是概念的拓展与延伸。海天考研飞跃计划建议考生对每个概念都要尽可能地从这几个方面来理解和把握。海天考研飞跃计划认为学懂概念,是学懂数学至关重要的一步。海天考研飞跃计划认为概念是支柱,每1道考题都离不开基本概念性的内容。再者,海天考研飞跃计划建议考生从以下3个方面去理解:第一要搞清定理性质的条件、结论,海天考研飞跃计划认为条件的性质是充分的、是必要的,还是充分必要的,要真正搞懂。第二尽可能从几何和数值的角度加深对抽象理论的理解。第三要尽可能搞清相关理论间的有机联系。如方阵行列式不等于零,用矩阵的语言来讲就是该矩阵是满秩的或可逆的;用向量组的语言来讲,即该矩阵的行列向量组均线性无关;用方程组语言来讲,就是以该矩阵为系数的齐次线性方程组只有零解。用特征值语言来说,就是该矩阵没有零特征值。海天考研飞跃计划认为命题的时候经常是告知这一条,考查考生是否知道另一条。最后,海天考研飞跃计划建议考生从以下3个方面去理解:第一基本的公式要熟悉,最好要搞清楚每个公式的来龙去脉。第二基本的题型方法要熟悉。第三需要适当地掌握一些答题技巧。如现在选择题的比例接近二分之一,海天考研飞跃计划要求考生掌握求解选择题常用的方法——图示法、赋值法、逆推法、排除法等等;海天考研飞跃计划认为知道了哪些方法适合于解答哪类问题,知道了这些方法和适用的问题类型,就可以快速准确地解答选择题。参考资料来源:中国网-学习考研数学的三个方法 考研飞跃计划提醒

考研数学一二三四 难易程度排序

热狗
其口虽言
倒 别听一楼的 太不负责任了 数一 数二是理工科的最难了数一和数二是一体的 数二比数一简单然后是数三 (经济数学)比前两个简单最简单的是数四数三可以说是和数四是一体的2007年考研数学大纲变化综述--作者: 数一 试卷结构:无变化 内容比例:高等数学由原来的“约60%”变为2007年的“约56%” ,线性代数由原来的“约20%”变为2007年的“约22%”,概率论与数理统计由原来的“约20%”变为2007年的“约22%” 题型比例:填空题与选择题由原来的“约40%”变为2007年的“约45%”,解答题(包括证明题)由原来的“约60%” 变为2007年的“约55%”高等数学 一、函数、极限、连续 考试要求:8、由原来的“理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限”变为2007年的“理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限” 二、一元函数微分学 考试要求:7、由原来的“掌握函数的最大值和最小值的简单应用”变为2007年的“掌握函数的最大值和最小值的应用” 三、一元函数积分学 考试内容:删去2006年大纲中的“用定积分表达和计算质心” 四、多元函数积分学 考试内容:由原来的“已知全微分求原函数”变为2007年的“二元函数全微分的原函数” 考试要求:5、由原来的“会求全微分的原函数”变为2007年的“会求二元函数全微分的原函数” 6、由原来的“会用高斯公式、斯托克斯公式计算曲面、曲线积分”变为2007年的“掌握用高斯公式计算曲面积分的方法、并会用斯托克斯公式计算曲线积分” 五、无穷级数 考试要求:5、由原来的“绝对收敛与条件收敛的关系”变为2007年的“绝对收敛与收敛的关系” 7、由原来的“逐项微分”变为2007年的“逐项求导” 六、常微分方程 考试内容:由原来的“变量可分离的方程”变为2007年的“变量可分离的微分方程”线性代数 二、矩阵 考试要求:4、由原来的“掌握矩阵的初等变换”变为2007年的“理解矩阵初等变换的概念” 三、向量 考试要求:3、由原来的“了解向量组的极大线性无关组和向量组的秩的概念”变为2007年的“理解向量组的极大线性无关组和向量组的秩的概念” 五、矩阵的特征值和特征向量 考试要求:2、由原来的“了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件”变为2007年的“理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件”概率论与数理统计 二、随机变量及其分布 (一)随机事件和概率 考试内容:由原来的“随机变量及其概率分布”变为2007年的“随机变量” (三)多维随机变量及其概率分布 考试内容:由原来的“随机变量的独立性和相关性”变为2007年的“随机变量的独立性和不相关性”。由原来的“常用二维随机变量的概率分布”变为2007年的“常用二维随机变量的分布” (四)随机变量的数字特征 考试要求:2、由原来的“会根据随机变量的概率分布求其函数的数学期望”变为2007年的“会求随机变量函数的数学期望” (六)数理统计的基本概念 考试内容:由原来的“正态总体的某些常用抽样分布”变为2007年的“正态总体的常用抽样分布” 考试要求:3、由原来的“了解正态总体的某些常用抽样分布”变为2007年的“了解正态总体的常用抽样分布”数二 试卷结构 内容比例:由原来的“高等数学约80%,线性代数约20% ”变为2007年的“高等数学约78%,线性代数约22% ” 题型比例:由原来的“填空题与选择题约40% 、解答题(包括证明题)约60%”变为2007年的“填空题与选择题约45% 、解答题(包括证明题)约55%”高等数学 一、函数、极限、连续 考试内容:由原来的“简单应用问题的函数关系的建立”变为2007年的“函数关系的建立” 考试要求:1、由原来的“会建立简单应用问题中的函数关系式”变为2007年的“会建立应用问题中的函数关系” 4、由原来的“了解初等函数的基本概念”变为2007年的“了解初等函数的概念” 8、由原来的“理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限”变为2007年的“理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限” 二、一元函数微分学 考试要求:4、由原来的“会求分段函数的一阶、二阶导数”变为2007年的“会求分段函数的导数” 5、由原来的“了解柯西中值定理”变为2007年的“了解并会用柯西中值定理” 7、由原来的“掌握函数最大值和最小值的求法及其简单应用”变为2007年的“掌握函数最大值和最小值的求法及其应用” 三、一元函数积分学 考试要求:删去2006年大纲的“6、了解定积分的近似计算法、质心” 四、多元函数微积分学 考试内容:由原来的“多元函数偏导数的概念与计算”变为2007年的“多元函数的偏导数和全微分”线性代数 二、矩阵 考试要求:1、由原来的“理解正交矩阵”变为2007年的“了解正交矩阵以及它的性质” 四、线性方程组 考试要求:3、删去2006年大纲的“理解解空间的概念” 五、矩阵的特征值和特征向量 考试内容:删去2006年大纲的“相似变换的概念及性质” 六、二次型(新增) 考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形与规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求:1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念 2、了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形 3、理解正定二次型、正定矩阵的概念,并掌握其判别法。2007年数学(三)大纲的变化考试科目:没有变化。试卷结构: 变化的内容:(二)内容比例:微积分由原来的约占50%增加为约占56%;线性代数由原来的约占25%减少为约占22%;概率论与数理统计由原来的约占25%减少为约占22%。 (三)题型比例:填空题与选择题的比例由原来的约占30%增加为约占45%;解答题(包括证明题)的比例由原来的约70%减少为约占55%。微积分 一、函数、极限、连续 考试内容:“无穷小和无穷大的概念及其关系”修改为“无穷小量和无穷大量的概念及其关系” “无穷小的性质及无穷小的比较”修改为“无穷小量的性质及无穷小量的比较” 考试要求: 1.“会建立简单应用问题的函数关系”修改为“会建立应用问题的函数关系”。 6.“会应用两个重要极限”修改为“掌握利用两个重要极限求极限的方法”。 7.“理解无穷小的概念和基本性质,掌握无穷小的比较方法。了解无穷大的概念及其与无穷小的关系。”修改为“理解无穷小量的概念和基本性质,掌握无穷小量的比较方法。了解无穷大量的概念及其与无穷小量的关系。” 二、一元函数微分学 考试内容:无变化。 考试要求:无变化。 三、一元函数积分学 考试内容:无变化。 考试要求:将广义积分写做反常积分。其他无变化。 四、多元函数微积分学 考试内容:无变化。 考试要求: 4.“会解决某些简单的应用问题”改为“会解决简单的应用问题”。 其他无变化。 五、无穷级数 考试内容:无变化。 考试要求:无变化。 六、常微分方程与差分方程 考试内容:无变化。 考试要求:无变化。线性代数 一、行列式 考试内容:无变化。 考试要求:无变化。 二、矩阵 考试内容:无变化。 考试要求:无变化。 三、向量 考试内容:无变化。 考试要求:无变化。 四、线性方程组 考试内容:无变化。 考试要求:无变化。 五、矩阵的特征值和特征向量 考试内容:无变化。 考试要求:无变化。 六、二次型 考试内容:无变化。 考试要求:无变化。 综上:线性代数的考试内容和考试要求均无变化。概率论与数理统计 一、随机事件和概率 考试内容:无变化。 考试要求:无变化。 二、随机变量及其分布 考试内容:无变化。 考试要求:无变化 2.增加了“掌握几何分布及其应用”。 其他无变化。 三、多维随机变量的分布 考试内容:无变化 考试要求:无变化 四、随机变量的数字特征 考试内容:无变化 考试要求:无变化 五、大数定律和中心极限定理 考试内容:无变化 考试要求:无变化 六、数理统计的基本概念 考试内容:无变化 考试要求:无变化七、参数估计 考试内容:无变化 考试要求:无变化 八、假设检验 考试内容:无变化 考试要求:无变化 综上:概率论与数理统计部分只增加了要求“掌握几何分布及其应用”,其他均无变化。2007年数学四考试大纲变化 试卷结构 内容比例:2006年 微积分 50 % 线性代数 25% 概率论 25% 2007年 微积分 56 % 线性代数 22% 概率论 22% 题型比例:2006年 填空题与选择题 40% 解答题(包括证明)60% 2007年 填空题与选择题 45% 解答题(包括证明)55%微积分 1.函数、极限、连续 会应用两个重要极限 改成 掌握利用两个重要极限求极限的方法。 了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用改成 理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 2.一元函数微分学 考试内容:导数的概念 改成 导数和微分的概念; 增加 平面曲线的切线与法线; 导数的四则运算 改成 导数和微分的四则运算; 复合函数、反函数和隐函数的导数 改成 复合函数、反函数和隐函数的微分法;罗尔定理和拉格郎日中值定理及其应用改成 微分中值定理; 函数单调性 改成 函数单调性的判别 考试要求:增加 会求平面曲线的切线和法线方程;增加 了解柯西中值定理,掌握定理的简单应用;掌握函数单调性的判别方法及其应用,掌握函数极值、最大值和最小值的求法,会求解较简单的应用题改成 掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用; 会求函数的斜渐进线 改成 会求函数的渐进线; 3.一元函数的积分学 考试要求:会利用定积分计算平面图形的面积和旋转体的体积 改成 会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值; 4.多元函数微积分学 考试要求:了解二元函数的极限与连续的直观意义 改成 了解二元函数的极限与连续的概念 5.常微分方程没有改变线性代数 1.行列式:无变化 2.矩阵 增加 掌握矩阵的转置 了解方阵的幂,掌握方阵乘积的行列式的性质 改成 了解方阵的幂与方阵乘积的行列式的性质 3.向量:无变化 4.线形方程组:无变化 5.矩阵的特征值和特征向量:无变化 6.二次型 (新增) 考试内容:二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形用正交变换和配方法化二次型为标准型 二次型及其矩阵的正定性 考试要求: 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念; 2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形;、 3.理解正定二次型、正定矩阵的概念,并掌握其判别法。概率论 1.随机事件和概率:无变化 2.随机变量及其概率分布:无变化 3.多维随机变量的分布 离散随机变量的联合概率分布、边缘分布和条件分布 改成 二维离散随机变量的联合概率分布、边缘分布和条件分布4.随机变量的数字特征:无变化 5.中心极限定理 考试内容:增加 切比雪夫大数定律 伯努力大数定律 辛钦大数定律 考试要求:增加了解 切比雪夫大数定律、伯努力大数定律、辛钦大数定律,并会用相关定理近似计算有关随机事件的概率。

考研:数一数二数三哪个考145分以上最难

符验
巧言
你不会是真想考145分以上吧,有这功夫,弄点别的,比这有效率,比如专业课,或者英语。实际上不论数几,考145分以上都很难。让你考这么高分,出题老师太没面子了。所以他们会为你设置重重障碍,让你很不舒服的。

考研考数学二难吗?对于中等程度的考生大概能考多少分?难点在哪里?

鼬鸣
火蜥蜴
  你好,我不知道你考的什么专业,我就把我数学复习经验说一下吧,希望对你有所帮助。(里面有将有什么复习资料以及如何使用)  考研数学二用的教材是:  高数:同济大学应用数学系主编的《高等数学》(上、下册)(绿色封皮)  线性代数:同济大学应用数学系主编的《线性代数》(紫色封皮)  参考复习资料:  李永乐,王式安复习全书,基础过关660,李永乐的那本超越135  我不知道你考的什么专业,我就把我数学的复习经验说一下,希望对你有所帮助。  数学复习主要就是联系做题,我当时考的数一,用的是李永乐的复习全书(现在没有二李的版本了,只有李永乐和王式安那一本,也不错),全书总共看了三遍(从一开始就要看了,和看教材同步),可以说每道题都研究过,知道涵盖的知识点和做法。还有对于练习来说,基础过关660是很不错的选择,里面的小题都很巧妙,可以当大题研究的。在练习到一定程度以后,我就开始做真题,真题反复做了很多遍(至少有6,7遍),反复归纳总结(真题非常重要)。最后就是冲刺阶段的李永乐的那本超越135,这个也很不错。考研数学最重要的就是要保持解题的状态,懈怠三天,做题的水平就会退步。  数一和数二的复习方法没有什么本质的区别,你如果能按照上面的方法复习,120肯定是没有问题的。有什么需要咨询的可以接着问,希望可以帮到你。

考研 数二考啥?难吗?

大河沿
归完版
2009年考研数学大纲内容 数二高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:, 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.2009年考研数学大纲内容 数二线性代数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的的正交规范化方法 考试要求1.理解 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.数二不考概率论,你可以参考一下。相对数1,3来说,数2比较简单