欢迎来到加倍考研网! 北京 上海 广州 深圳 天津
微信二维码
在线客服 40004-98986
推荐适合你的在职研究生专业及院校

2019年考研数学一真题附答案解析

漫游者
少林寺
去百度文库,查看完整内容>内容来自用户:GG135795959862019年考研数学一真题解析一、选择题1—8小题.每小题4分,共32分.1.当时,若与是同阶无穷小,则()(A)(B)(C)(D)【答案】(C)【详解】当时,,所以,所以.2.设函数,则是的()(A)可导点,极值点(B)不可导的点,极值点(C)可导点,非极值点(D)不可导点,非极值点【答案】(B)【详解】(1),所以函数在处连续;(2),所以函数在处不可导;(3)当时,,函数单调递增;当时,,函数单调减少,所以函数在取得极大值.3.设是单调增加的有界数列,则下列级数中收敛的是()(A)(B)(C)(D)【答案】(D)【详解】设是单调增加的有界数列,由单调有界定理知存在,记为;又设,满足,则,且,则对于正项对于级数,前项和:也就是收敛.4.设函数,如果对于上半平面内任意有向光滑封闭曲线都有那么函数可取为()(A)(B)(C)(D)【答案】(D)【详解】显然,由积分与路径无关条件知,也就是,其中是在上处处可导的函数.只有(D)满足.5.设是三阶实对称矩阵,是三阶单位矩阵,若,且,则二次型的规范形是()(A)(B)(C)(D)【答案】(C)【详解】假设是矩阵的特征值,由条件可得,也就是矩阵(设函数分别求解线性方程组

2015-2019年考研数学一真题及答案解析精编版

莲舫
北山
去百度文库,查看完整内容>内容来自用户:worealmanOK2019年考研数学一真题解析一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当x0时,若xtanx与xk是同阶无穷小,则kA.1.B.2.C.3.D.4.【答案】C【答案解析】根据泰勒公式有xtanx~1x3,故选C.3对泰勒不熟悉的同学,本题也可以用洛必达法则.xx,x0,2.设函数f(x)则x0是f(x)的xlnx,x0,A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.【答案B】xlnx0【答案解析】由于lim不存在(极限为无穷属于极限不错在),故x0是f(x)的x0x不可导点.且当x0,f(x)0;0x1,f(x)0且f(0)0,由极值定义可知,x0是f(x)的极值点,故选B.3.设un是单调增加的有界数列,则下列级数中收敛的是A.un.n1nB.(1)n1.n1unC.n11unun1.D.u2n1un2.n1【答案】D【答案解析】选项A:un单调递增有界,知un收敛,故limnunu0,也就是n趋近无穷时,un1,故根据极限形式的比较审敛发,un与1同敛散,而1发散,故选项nnn1nn1nn1nA

2018考研数学一真题最强解析及点评(没有之一),给你2019考研数学最科学的指引

龙家将
故海内服
去百度文库,查看完整内容>内容来自用户:高教金通(武汉)教育科技有限公司2019考研数学备考最科学的指南2018考研数学真题超级详解及点评2018数学真题唯一最全面、准确、详尽的解析(数学一)试题解析及点评版权为贺惠军老师所有,转载请给予说明。送分题绝对值函数求导,实质考查导数定义的基本掌握。利用导数定义,写出零界点0处的导数,左导不等于右导则不可导。《考研数学超级金讲》(以下简称《金讲》)第70页有专题详解绝对值函数的导数计算。本题难度远低于《金讲》本节例7,属送分题。考查简单解析几何关系公式的应用。设出点,套公式解出即得答案,属送分题。送分题级数和求值问题。唯一思路将级数转化为7种常用函数形式,通过形式比较得出对应的数值,属送分题。送分题同型例题送分题区间有对称性,必用考查定积分性质及其对称性的应用。对称性定理简化计算。相同的积分区间的定积分大小的比较一定只是对被积函数大小的比较,这类题几乎每年必考。这一结论在《超级金讲》109页和暑期集训中反复强调的重点。暑期集训至少讲过2道难度远超出本题的例题。先利用对称性化简,然后比较被积函数大小即得答案,属送分题。难题可能是大部分同学卷面遇上的第一道难题,本题区别一般矩阵相似性的判断,一般相似性判断是通过求其共同相似于一个对角矩阵,但这里矩阵不能相似对角化,超出常规试题的判断范围,增加了难度。《金讲》518页有对相似性性质有最全面的归纳和对定义的超倍辨析,如果学习不疏忽这

2019考研数学一张宇

裸尸痕
三年
不是19,但是最新的链接: 提取码:84z6

2018~2019年考研数学三真题谁有啊,求助攻啊!

裸狼
必由其名
iphonexr白苹果在上海可以

2018考研数学二真题最强解析及点评(没有之一),给你2019考研数学最科学的指引

各复其根
命也
去百度文库,查看完整内容>内容来自用户:高教金通(武汉)教育科技有限公司2019考研数学备考最科学的指南2018考研数学真题超级详解及点评2018数学真题唯一最全面、准确、详尽的解析(数学二)试题解析及点评版权为贺惠军老师所有,转载请给予说明。考查幂指函数的极限求解,幂指函数首先用对数形式转换。《金讲》中反复强调了这一万能解答步骤,属送分题。送分题绝对值函数求导,实质考查导数定义的基本掌握。利用导数定义,写出零界点0处的导数,左导不等于右导则不可导。《考研数学超级金讲》(以下简称《金讲》)第70页有专题详解绝对值函数的导数计算。本题难度远低于《金讲》本节例7,属送分题。送分题复合函数表达式的求解,这是中学的难点。考虑到不少同学中学数学基础知识并不牢固,《金讲》在第一章特设了一个重难点专题详解,足以化解任何复合函数表达式求解,对《金讲》读者是送分题。送分题可能是大部分同学卷面遇上的第一道难题。出现二阶或者二阶以上导数,必须考虑泰勒展开,这一结论在《金讲》第154页给出非常重要的提醒,在暑期集训中也反复强调这一结论,并给出了不少于3道以上试题的应用。半送分题送分题定积分性质及其对称性的应用。区间对称性,这一结论在《金讲》和暑期集训中反复强调的重点。相同的积分区间的定积分大小的比较一定只是对被积分大小的比较,这类题几乎每年必考。暑期集训至少讲过2道难度超出本题难度的例题,属送分题。考查简单积分区间变换及积分对称性定理。画出不同积分的

今年考研数学泄题了吗

得也
叫化仔
“李林”事件?的确在发酵啊,不过泄题目是不太可能的,最多是小群体的。为了赚钱,李老师真的拼了!不过,估计拼到头了!!最新!关于考研数学“泄题”,教育部考试中心这样说2017-12-27 新华社26日,网传某教师考研辅导视频涉嫌泄露研究生招生考试数学试题。对此,教育部考试中心予以了否认。有网友发微博称,2018年全国硕士研究生统一招生考试数学科目出现“神押题”,一名教师在考前押题视频中举的例题与实际考试试题十分相似。教育部考试中心就此回应说,经组织有关专家对视频等材料进行研判,视频中所举的例题均与实考试题不同。该教师及视频中所提及的老师均未参与2018年研究生招生考试数学科命题工作。 教育部考试中心有关负责人表示,任何干扰破坏国家教育考试的行为,一经查实,将依法依规严肃处理,决不姑息。

考研答题纸标记,今年考研做数学,不小心再答题纸上蹭了一条黑线,很轻,不是故意的,监考老师说,应该没

敲门
洛基
请问后来影响成绩了吗?我今年考英语不小心给划了一道在不让答题不让做标记的地方

2021年考研数学一,题难吗?

皇矣
实之宾也
总体来说,近五年来2021考研数学一算中等难度,难度最大的是2020,其次2016,2018,2021,2017,2015,2019