大急救
去百度文库,查看完整内容>内容来自用户:妖魂梦雨2011年考研数学试题(数学一)一、选择题1、曲线y=(x−1)(x−2)(x−3)(x−4)的拐点是(234)(A)(1,0)(B)(2,0)(C)(3,0)(D)(4,0)【答案】C【考点分析】本题考查拐点的判断。直接利用判断拐点的必要条件和第二充分条件即可。【解析】由y=(x−1)(x−2)(x−3)(x−4)可知1,2,3,4分别是234y=(x−1)(x−2)(x−3)(x−4)=0的一、二、三、四重根,故由导数与原函数之间的234′(2)y′(3)y=′(4)0关系可知y′(1)≠0,y==′′(3)y′′(4)0,y′′′(3)≠0,y′′′(4)=y′′(2)≠0,y0,故(3,0)是一拐点。==2、设数列{an单调减少,liman=0,Sn=n→∞∑a(n=1,2)无界,则幂级数k=1kn∑a(x−1)n=1n∞n的收敛域为()(A)(-1,1](B)[-1,1)(C)[0,2)(D)(0,2]【答案】C【考点分析】本题考查幂级数的收敛域。主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。【解析】Sn=∑ak(n=1,2)无界,说明幂级数∑an(x−1)的收敛半径R≤1;nn∞k=1n=1{an单调减少,limann→∞敛半径R≥1。因此,幂级数=0,说明级数∑an(−1)收敛,可知幂级数∑an(x−1)的收nnn=1n=1